Главная БиблиографияПо типу публикаций
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   Статьи   |   Книги   |   Разделы книг   |   Диссертации   |   Конференционные материалы   |   Документация   |   Авторские свидетельства   |   Веб-ресурсы   |   Другое   |    Количество записей: 1790
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Статьи
Федотов С.А., Михайлова-Филиппова М.И. Течение магм в дайках разной мощности (по данным математического моделирования при вязкости, зависящей от температуры) // Вулканология и сейсмология. 1994. № 6. С. 24-43.    Аннотация
Приведены результаты математического моделирования подъема магмы п трещине-дайке с вязкостью, зависящей от температуры. Расчеты выполнены для дае шириной 0,5-4,0 м при вязкости магмы 23-9,6-106 Па-с (230-Ю8 Пз), глубин магматического очага 30 км, температуре и избыточном давлении в нем 1300° С и 200 ба соответственно. Исследованы распределения скоростей однофазного течения, температур и вязкости магмы внутри даек, намерзание магмы на стенках и в голове даек, услови остановки се течения в дайках разной ширины. Показано, что центральные паибол быстрые струи магмы в дайках способны достичь земной поверхности, сохран температуру глубинного очага за вычетом небольшого адиабатического охлаждения.

The results of mathematical modeling are given foi magma ascent in a fissure or dike for the case of temperature-dependent viscosity. Th( parameters chosen for calculations are as follows: the dike widths in the range 0.5-4.0 m, the magma viscosity 23-9.6 ± 106 Pa s (230-108 Poises), the depth to the magma chambei 30 km, and the temperature and pressure excess in the magma chamber 1300° С and 200 bars respectively. The distribution of one-phase flow velocities, temperature and viscosity of magmi inside dikes, the magma freezing on the dike walls and in its head, and the conditions undei which the magma ceases to move in dikes of different widths are investigated. It is shown tha the central faster streams of magma in dikes can reach the earth's surface, preserving thi temperature of a deep chamber (with the deduction of slight adiabatic cooling).
Федотов С.А., Муравьев Я.Д., Иванов В.В., Леонов В.Л., Магуськин М.А., Гриб Е.Н., Озеров А.Ю., Карпов Г.А., Фазлуллин С.М., Шувалов Р.А., Лупикина Е.Г., Ушаков С.В. Извержения в кальдере Академии наук и Карымского вулкана в 1996-1997 гг. и их воздействие на окружающую среду // Глобальные изменения природной среды. Новосибирск: 1998. С. 127-145.
Федотов С.А., Набоко С.И., Сугробов В.М., Иванов Б.В. Всесоюзные вулканологические совещания и их роль в развитии отечественной вулканологии // Вулканология и сейсмология. 1980. № 4. С. 107-110.
Федотов С.А., Славина Л.Б., Сенюков С.Л., Кучай М.С., Мячкин В.В. Сейсмические процессы, предшествовавшие и сопровождавшие Большое трещинное Толбачинское извержение (БТТИ) 1975-1976 гг. и Трещинное Толбачинское извержение (ТТИ) 2012-2013 гг. // Труды Четвертой научно-технической конференции "Проблемы комплексного геофизического мониторинга Дальнего Востока России", 30 сентября - 4 октября 2013 г. , г. Петропавловск-Камчатский. Обнинск: ГС РАН. 2013. С. 35
Федотов С.А., Сугробов В.М., Уткин И.С., Уткина Л.И. Возможности использования тепла магматического очага Авачинского вулкана и окружающих его пород для тепло- и электроснабжения // Вулканология и сейсмология. 2007. № 1. С. 32-46.    Аннотация
Проведен анализ результатов геологических и геофизических исследований, в том числе последних лет, позволяющих судить о наличии незастывшего магматического очага под Авачинским вулканом на Камчатке и оценить глубину его залегания и примерные размеры. Дана оценка запасов тепла нагретых магматическим очагом вулкана горных пород с момента его возникновения и до настоящего времени с учетом переменных размеров очага в процессе эволюции. Проанализированы геолого-геофизические предпосылки возможности использования тепловой энергии нагретых пород, вмещающих магматический очаг, для тепло- и электроснабжения г. Петропавловска-Камчатского. Предлагается создание подземной геотермальной циркуляционной системы (трещинного теплообменника) с помощью бурения глубоких скважин.

The results of geological and geophysical studies, including recent ones, which make it possible to verify the existence of a liquid magma chamber below the Avachinsky volcano on Kamchatka, and to estimate the chamber depth and approximate dimensions, are analyzed. The heat stored in the host rock heated by the volcanic magma chamber from the time of chamber origination to the present is estimated, taking variable chamber dimensions during the process of evolution into account. The geological-geophysical prerequisites for using the thermal energy of the heated rock which surrounds the magma chamber to supply heat and power to Petropavlovsk-Kamchatskii are analyzed. The creation of an underground geothermal circulation system (fracture heat exchanger) using deep boreholes is proposed.
http://repo.kscnet.ru/1826/ [связанный ресурс]
Федотов С.А., Уткин И.С., Уткина Л.И. Оценка размеров коровых очагов вулканов и изменения их размеров во времени по данным о количестве, составе изверженных продуктов и глубине очага // Вулканология и сейсмология. 2000. № 3. С. 3-14.    Аннотация
Проведено математическое моделирование динамики роста коровых магматических очагов вулканов за счет плавления вмещающих пород и выноса выплавленного материала на поверхность в процессе извержений. Получены оценки размеров магматических очагов вулканов Камчатки: Ключевского, Шивелуча, Ильинского, Желтовского и Безымянного, - и изменения, роста и последующего уменьшения этих размеров во времени по данным о количестве, составе изверженных продуктов и глубине очага. Максимальные величины радиусов очагов находятся в пределах от 0.5 до 6.0 км. Оценено время достижения очагами указанных вулканов своих максимальных размеров, а также продолжительность времени их пребывания в квазистационарном состоянии, когда температура в очаге почти постоянна, а его размеры близки к максимальным. Время нахождения в квазистационарном состоянии достигает нескольких десятков тысяч лет у крупных вулканов.
Федотов С.А., Уткин И.С., Уткина Л.И. Периферический магматический очаг базальтового вулкана Плоский Толбачик, Камчатка: деятельность, положение и глубина, размеры и их изменения по данным о расходе магм // Вулканология и сейсмология. 2011. № 6. С. 3-20.    Аннотация
Наиболее мощным вулканическим центром на островных дугах и в зонах подвига литосферных плит является Ключевская группа вулканов (КГВ), Камчатка. В голоцене вулканическая деятельность в южной части КГВ сосредоточена в крупном базальтовом вулкане Плоский Толбачик (ПТ), высота 3085 м, и его Толбачинской зоне шлаковых конусов (ТЗ), длина 70 км, которые сходны с вулканами гавайского типа и их рифтами. Извергаются базальты разного типа с расходом 18 х 106 т/г. В работе приводятся сведения о периферическом магматическом очаге ПТ, полученные несколькими независимыми способами. Использовались данные о развитии, извержениях, расходе магм, деформациях, землетрясениях ПТ и ТЗ, а также расчеты размеров проточного магматического очага ПТ. По сейсмологическим и геодезическим данным этот очаг располагается под вершинной кальдерой ПТ, его поперечные размеры менее 6 км, кровля очага находится на глубине 2 км. По данным проведенных расчетов поперечный размер очага равен 4.9-5.8 км, вертикальный размер 3.2-3.9 км, объем очага 40-70 км3, а его центр находится на глубине около 4 км. Приведенные сведения поясняют свойства этого источника глиноземистых базальтов ПТ и ТЗ, а также всей сложной магматической питающей системы КГВ.

The Klyuchevskoi group of volcanoes (KGV) in Kamchatka is the most powerful existing island arc and subduction zone volcanic center. The Holocene volcanic activity in the southern part of the KGV is concentrated in a large basaltic volcano, Ploskii Tolbachik (PT), altitude 3085 m and in itsTolbachik zone of cinder cones (TZ), length 70 km, which are similar to Hawaiian-type volcanoes and their rifts. A variety of different basalt types are erupted at a rate of 18 x 106 t/yr. This paper provides information on the PT peripheral magma chamber obtained by several independent methods. We used data on the evolution, eruptions, magma discharge, deformation, and earthquakes in the PT and TZ, as well as calculations that give the size of the PT flow-through magma chamber. The use of seis- mological and geodetic data places the chamber under the PT summit caldera, gives its transverse size as below 6 km, and the top of the chamber at a depth of 2 km. Our calculations give 4.9-5.8 km for the transverse chamber dimension, 3.2-3.9 km for its vertical dimension, 40-70 km' for chamber volume, and about 4 km for the depth of chamber center. The information we provide makes the properties of this source of PT and TZ alumina-rich basalts clear, as well as those of the entire KGV complex plumbing system.
Федотов С.А., Фарберов А.И. О поглощении поперечных сейсмических волн в земной коре и верхней мантии в районе Авачинской группы вулканов // Проблемы вулканизма. Материалы II Всесоюзного вулканологического совещания, Петропавловск-Камчатский, 3-18 сентября 1964 г. Петропавловск-Камчатский: Дальневост. кн. изд-во. 1964. С. 16-17.
Федотов С.А., Хренов А.П., Чирков А.М. Большое трещинное Толбачинское извержение 1975 г., Камчатка // Доклады АН СССР. 1976. Т. 228. № 5. С. 1193-1196.
Федотов С.А., Хренова А.П., Жаринов Н.А. Ключевской вулкан, его деятельность в 1932-1986 гг. и возможное развитие // Вулканология и сейсмология. 1987. № 4. С. 3-16.
Федотов С.А., Хубуная С.А., Жаринов Н.А., Богоявленская Г.Е., Муравьев Я.Д., Иванов В.В., Демянчук Ю.В., Фазлуллин С.М., Новогородцева Т.Ю., Двигало В.Н., Будников В.А. Извержение вулканов Шивелуч и Ключевской в 1993 г. и их влияние на окружающую среду // Геология и геофизика. 1995. № 8. С. 117-131.    Аннотация
Дано описание извержений двух гигантских вулканов Камчатки, которые произошли в 1993 г. Наблюдались пирокластические потоки, лахары, пеплопады и взаимодействие лавовых и пирокластических потоков с ледниками. Приведены данные о росте андезитового купола и объеме выброшенного пепла вулкана Шивелуч, а также объеме излившейся андезитобазальтовой магмы Ключевского вулкана. Изучены последствия обоих извержений. Показано, что Шивелуч и Ключевской различаются по типу извержений и составу вулканических продуктов и поэтому оказывают разное влияние на окружающую среду. Отмечены существенные отличия в характере вулканической опасности.
Федотов С.А., Чирков А.М., Андреев В.Н., Гусев Н.А. Краткое описание хода трещинного Толбачинского извержения в 1975 году // Бюл. вулканол. станций. 1977. № 53. С. 3-12.
Федотов С.А., Энман В.Б., Магуськин М.А., Левин В.Е., Жаринов Н.А. Внедрение базальтов и образование питающих трещин большого Толбачинского извержения 1975 г. по геодезическим данным // Доклады АН СССР. 1976. Т. 229. № 1. С. 170-173.
Федотов С.А., Энман В.Б., Магуськин М.А., Левин В.Е., Жаринов Н.А., Энман С.В., Бахтиаров В.Ф. Движения земной коры, вызванные Большим трещинным Толбачинским извержением 1975-1976 гг. // Современный вулканизм и связанные с ним геологические, геофизические и геохимические явления (тезисы докладов) . V Всесоюзное вулканологическое совещание. Тбилиси: Мецниереба. 1980. С. 6-7.
Фирстов П.П. Ударно-волновые и акустические эффекты в атмосфере при вулканических извержениях (обзор) // Вестник КРАУНЦ. Серия: Науки о Земле. 2009. Вып. 14. № 2. С. 100-117.    Аннотация
В статье дан обзор работ, посвященных ударно-волновым и акустическим эффектам в атмосфере от вулканических извержений. Кратко показано развитие направления «акустика вулканических извержений» (ави) и информативность волновых возмущений в атмосфере о динамике извержений и параметрах эксплозивного процесса. Приведено обоснование феноменологической классификации волновых возмущений в атмосфере от вулканических извержений.

The paper provides an overview of recent studies related to the shock-wave and acoustic effects in the atmosphere from volcanic eruptions. Brief description is given to the development of a new trend known as Acoustics from Volcanic Eruptions (AVE) and informational content of wave disturbances in the atmosphere regarding the dynamics of eruptions and parameters of explosive process. Wave disturbances in the atmosphere from volcanic eruptions were classified and presented in the paper to explain their unique nature.
Фирстов П.П., Жаринов Н.А., Белоусов А.Б. Наблюдение за активностью Ключевского вулкана в 1987 г. метеорологическим радиолокатором // Вулканология и сейсмология. 1990. Т. 4. С. 93-96.
Фирстов П.П., Макаров Е.О., Максимов А.П., Чернев И.И. Отражение геодинамической обстановки северо-западного обрамления Тихого океана в динамике подпочвенного радона и в газовом составе теплоносителя Мутновской ГеоЭС // Вулканология и сейсмология. 2015. № 5. С. 43-49. doi: 10.7868/S0203030615050041.    Аннотация
Приводятся сведения об особенностях поведения временного ряда объемной активности радона за период 2000–2015 гг. в зоне влагонасыщения в районе Паратунского геотермального месторождения и временного ряда объемной доли молекулярного водорода газа теплоносителя скв. 016 Мутновского месторождения и их связи с сейсмичностью северо-западного обрамления Тихого океана. Сделан вывод, что длительные тренды в динамике объемной активности радона и высокая объемная доля молекулярного водорода в 2014 г. обусловлены изменением поля напряжений в зоне субдукции северо-западного фланга Тихого океана. Сделано предположение о возможности землетрясения с М > 7.5 в ближайшее 1.5 года. По данным академика С.А. Федотова, наиболее вероятный район этого события – от полуострова Шипунский до острова Шиашкотан (Средние Курилы)
Фирстов П.П., Максимов А.П., Чернев И.И. Динамика газового состава теплоносителя Мутновской ГЕОЭС в 2004 г. // Ползуновский вестник. 2006. № 2-1. С. 259-263.    Аннотация
Рассмотрена динамика газового состава теплоносителя Мутновской Геотермальной электростанции за период июнь - декабрь 2004 г. Выявлена тенденция снижения доли газа и понижения в нем отношения CO2/H2S.
Фирстов П.П., Махмудов Е.Р., Макаров Е.О., Фи Д. Комплексные геофизические наблюдения на вулкане Карымском (Камчатка) в августе 2012 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2012. Вып. 20. № 2. С. 48-58.    Аннотация
В статье приведены данные натурных наблюдений на вулкане Карымский в августе 2012 г., которые проведены комплексом аппаратуры, позволяющей регистрировать инфразвуковые колебания, аэродинамический шум, напряженность атмосферного электрического поля и объемную активность подпочвенного радона. Показано, что комплексные геофизические наблюдения являются достаточно информативными для мониторинга эксплозивной активности вулканов. На основе анализа волновых возмущений в атмосфере (аэродинамический шум, воздушные ударные волны) и сейсмических явлений, сопровождающих фрагментацию (разрушение) некоторого объема магмы, можно получить представления о физике эксплозивного процесса. Динамика объемной активности радона вблизи конуса вулкана Карымского коррелируется с активностью вулкана, что указывает на перспективность таких наблюдений.

The article presents new data from field observations at Karymskiy in August 2012, which were carried out by a complex of equipment allowing recording infrasonic fluctuations, aerodynamic noise and intensity of the atmospheric electric field and volumetric activity of underground radon. It is shown that integrated geophysical observations are quite informative to monitor explosive volcanic activity. The analysis of wave disturbances in the atmosphere (the aerodynamic noise, air shock waves) and seismic events accompanying the fragmentation of magma allow us to get an insight about the physics of the explosive process. The dynamics of volumetric activity of radon near to Karymskiy is correlated to the activity of the volcano, which indicates the perspective of such observations.
Фирстов П.П., Рашидов В.А., Мельникова А.В., Андреев В.И., Шульженкова В.Н. Ядерно-геофизические исследования в природном парке «Налычево» (Камчатка) // Вестник КРАУНЦ. Серия: Науки о Земле. 2011. Вып. 17. № 1. С. 91-101.    Аннотация
В 2009-2010 гг. в центральной части Природного парка «Налычево» были выполнены ядерно-геофизические исследования. В пределах термальной площадки «Котел» выявлены локальные аномалии γ-излучения со значением I ≥ 20-30 мкР/ч, вызванные повышенным содержанием радия, который откладывался в травертиновом покрове в зонах разгрузки термальных вод. Здесь зарегистрированы высокие значения объемной активности радона в почвенном воздухе, обусловленные, с одной стороны, наличием эманирующих коллекторов с повышенным содержанием радия в травертинах в местах бывших выходов термальных вод, и, с другой стороны, в зонах дизъюнктивных нарушений, которые, как правило, трассируются отрицательными формами рельефа. На техногенной термальной площадке «Грифон Иванова» формирование травертинового
покрова сопровождается отложением радийсодержащих минералов на расстоянии до первых сотен метров от источника, где фиксируются значения I ≥ 8 мкР/ч вдоль дренажной траншеи.

Over the period 2009-2010 the authors conducted a nuclear-geophysical investigation in Nalychevo Nature Park. Local anomalies with γ-radiation (I ≥ 20-30 µR/h) were detected within Kotel thermal area. The anomalies were caused by high radium concentration which deposited in travertine field of thermal spring’s sources. The authors also detected high levels of volumetric activity of radon in soil air caused, on one hand, by emanating collectors with high radium content in travertine within the zones of old sources of thermal springs and, on the other hand, by zones of fracture observed as negative landforms. Formation of travertine field at the non-natural thermal field «Grifon Ivanova» is accompanied by deposition of radium-bearing minerals within a few hundreds of meters away from the source with I ≥ 20-30 µR/h along the drain.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru