Главная БиблиографияПо авторам
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   J   |   K   |   L   |   M   |   N   |   O   |   P   |   R   |   S   |   T   |   V   |   W   |   Y   |   Z   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Я   |    Количество записей: 1777
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 С
Селянгин О.Б., Брайцева О.А., Егорова И.А., Сулержицкий Л.Д., Несмачный И.А. Геологические и тефрохронологические исследования современного вулканизма // Проблемы глубинного магматизма: Сб. статей. 1979. С. 31-49.
Селянгин О.Б., Пономарева В.В. Строение и развитие Гореловского вулканического центра, Южная Камчатка // Вулканология и сейсмология. 1999. № 2. С. 3-23.    Аннотация
Гореловский вулканический центр располагается в пределах интенсивной отрицательной гравитационной аномалии. Его развитие включает формирование дацит-андезитовой докальдерной постройки, образование крупной кальдеры при извержении >100 км3 игнимбритов и пемз, формирование субкольцевого комплекса многовыходного дацит-базальтового вулканизма и сложной внутрикальдерной базальтоидной постройки современного вулкана Горелый с рифтовой системой на нем. По данным детальных геолого-петрологических и тефрохронологических исследований освещаются закономерности развития центра и его магмопитающей системы, меняющейся от глубоко- и крупноочаговой центральной к центрально-трещинной с небольшим приповерхностным очагом при возрастании доли базальтоидов в продуктах деятельности центра.
http://www.kscnet.ru/ivs/bibl/vulk/stgorel/s2-1999.pdf [связанный ресурс]
Сенюков С.Л., Дрознина С.Я., Гарбузова В.Т., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Мониторинг активности вулканов Камчатки в 2004 году // Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 30 марта - 1 апреля 2005 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2005. С. 69-79.
Сенюков С.Л., Дрознина С.Я., Нуждина И.Н., Гарбузова В.Т., Кожевникова Т.Ю. Исследования вулканов Камчатки дистанционными методами в 2005 году // Проблемы эксплозивного вулканизма (к 50-летию катастрофического извержения вулкана Безымянный). Материалы первого международного симпозиума. Петропавловск-Камчатский, 25-30 марта 2006 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2006. С. 64-75.    Аннотация
MONITORING OF ACTIVE KAMCHATKAN VOLCANOES
USING REMOTE METHODS IN 2005
Sergey L. Senyukov, Svetlana Y. Droznina, Irina N. Nuzhdina,
Valentina T. Garbuzova, and Tatiana Y. Kozhevnikova
Kamchatkan Branch of the Geophysical Survey of the RAS, Petropavlovsk-Kamchatsky, 683006, RUSSIA
e-mail: ssl@emsd.ru
Kamchatkan Branch of the Geophysical Survey (KBGS) RAS has being monitored
volcanic activity since February 2000 (http://emsd.iks.ru/~ssl/monitoring/main.htm)
using three remote methods: 1) Seismic monitoring is a leading method (processing and
interpretation of the data from automatic telemetric seismic stations); 2) Visual and video
observation; 3) Satellite observation. Processing and interpretation of the sensor AVHRR
data from satellite NOAA. Data from KCCM (Kamchatsky Centre of Communication
and Monitoring).
In 2005, Sheveluch, Kluchevskoy, Bezymianny and Karymsky volcanoes had the
eruptions. Successful short-term eruption predictions (time and size) for Bezymianny and
Klyuchevskoy volcanoes were made by Research Laboratory of Seismic and Volcanic
Activity (KBGS) and passed to Kamchatkan Branch of Russian Advisory Council.
Сенюков С.Л., Нуждина И.Н., Дрознина С.Я., Кожевникова Т.Ю. Сейсмичность Авачинского вулкана в 1994-2005 гг. // Геофизический мониторинг Камчатки. Материалы научно-технической конференции, Петропавловск-Камчатский, 17-18 января 2006 г. Петропавловск-Камчатский: ГС РАН. 2006. С. 101-105.
Серафимова Е.К. Фумарольная деятельность вулкана Безымянного в 1966-1967 гг. // Бюл. вулканол. станций. 1971. № 47. С. 23-28.
Серафимова Е.К., Овсянников А.А., Муравьев Я.Д. Вулканические эксгаляции вулкана Авачинский в постэруптивном процессе после извержения 1991 г. // Вулканология и сейсмология. 2002. № 4. С. 22-30.
Сирин А.Н. Извержение вулкана Безымянного в мае-июне 1962 г. // Бюл. вулканол. станций. 1964. № 38. С. 45-61.
Сирин А.Н. О соотношении центрального и ареального вулканизма. М.: Наука. 1968. 196 с.
Сирин А.Н. Состояние некоторых вулканов Камчатки в начале 1957 г. // Бюл. вулканол. станций. 1958. № 27. С. 16-24.
Сирин А.Н., Тимербаева К.М. Извержение Корякского вулкана 1956-1957 гг. // Бюл. вулканол. станций. 1959. № 28. С. 3-21.
Славина Л.Б., Гарагаш И.А., Горельчик В.И., Иванов Б.В., Белянкин Г.А. Скоростное строение и напряженно-деформированное состояние земной коры в районе Ключевской группы вулканов Камчатки // Вулканология и сейсмология. 2001. № 1. С. 49-59.
Слезин Ю.Б., Федотов С.А. Физические характеристики извержения // Большое трещинное Толбачинское извержение. Камчатка. 1975-1976. // Большое трещинное Толбачинское извержение (1975-1976 гг., Камчатка). М.: Наука. 1984. С. 143-176.
http://repo.kscnet.ru/541/ [связанный ресурс]
Смагин С.И., Лупян Е.А. , Сорокин А.А., Бурцев М.А., Верхотуров А.Л., Гирина О.А., Ефремов В.Ю., Крамарева Л.С., Прошин А.А., Толпин В.А. Информационная система работы с данными спутниковых наблюдений региона Дальнего Востока России для проведения научных исследований в различных областях знаний // Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т. 10. № 1. С. 277-291.    Аннотация
В работе рассматриваются вопросы создания информационной системы коллективного пользования данными космического дистанционного зондирования Земли для проведения научной, образовательной и инновационной деятельности в области исследования и контроля состояния окружающей среды на Дальнем Востоке России. Формулируются основные цели и задачи создаваемой системы, а также описываются предпосылки, технологические возможности и информационная инфраструктура, которые легли в ее основу. Представлен перечень существующих сервисов и предполагаемые направления использования и развития системы.

Creation of a shared information system to use remote sensing data for research, education and innovation in the field of environmental research and monitoring in the Far East of Russia is considered. Discussed are the main goals and objectives of the system being created, the prerequisites, technological capabilities and information infrastructure which formed the basis for the system. The article presents the main features currently implemented in the system, and the possible ways of future use and developing the system.
http://jr.rse.cosmos.ru/article.aspx?id=1170 [связанный ресурс]
Современная активность вулканов Курило-Камчатской островной дуги и окружающая среда: комплексные исследования механизма извержений вулканов разного типа, особенностей эруптивной эволюции экструзивных куполов андезитовых вулканов, геохимии твердых, жидких и газообразных продуктов извержений, развития и протекания опасных процессов, сопровождающих вулканические явления, их взаимодействия с окружающей средой и климатом (2009-2011 гг.). Научно-технический отчет (заключительный). Петропавловск-Камчатский: ИВиС ДВО РАН. 2013. 204 с.
Соловьев В.А. Природные газовые гидраты как потенциальное полезное ископаемое // Российский химический журнал. 2003. Т. 157. № 3. С. 59-69.
Сорокин А.А., Королев С.П., Верхотуров А.Л., Шестаков Н.В., Лупян Е.А. , Гирина О.А. Информационная система для исследования опасных природных явлений на Дальнем Востоке России по данным спутниковых и наземных инструментальных наблюдений // Тринадцатая Всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса". Материалы . Москва: ИКИ РАН. 2015.
Сорокин А.А., Королев С.П., Урманов И.П., Верхотуров А.Л., Шестаков Н.В., Гирина О.А. Информационная система для работы c данными инструментальных наблюдений с целью проведения исследований и мониторинга опасных природных явлений на Дальнем Востоке России // Геодинамические процессы и природные катастрофы. Опыт Нефтегорска: Всероссийская научная конференция с международным участием, Южно-Сахалинск, 26 - 30 мая 2015 г.: сборник материалов. В 2-х томах. Владивосток: Дальнаука. 2015. Т. 2. С. 443-447.
Сорокин А.А., Королев С.П., Шестаков Н.В., Коновалов А.В., Гирина О.А. Организация работы инструментальных сетей наблюдений ДВО РАН для проведения геофизических исследований и мониторинга опасных природных явлений на Дальнем Востоке России // Труды Четвертой научно-технической конференции "Проблемы комплексного геофизического мониторинга Дальнего Востока России", 30 сентября - 4 октября 2013 г. , г. Петропавловск-Камчатский. Обнинск: ГС РАН. 2013. С. 352-355.    Аннотация
В докладе представлено описание автоматизированной информационной системы “Сигнал”, предназначенной для обеспечения работы инструментальных сетей наблюдений ДВО РАН и совместного анализа научных данных в области мониторинга опасных природных процессов и явлений на территории Дальнего Востока России.
Сорокин А.А., Королев С.П., Гирина О.А., Балашов И.В., Ефремов В.Ю., Романова И.М., Мальковский С.И. Интегрированная программная платформа для комплексного анализа распространения пепловых шлейфов при эксплозивных извержениях вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 4. С. 9-19. doi: 10.21046/2070-7401-2016-13-4-9-19.    Аннотация
В связи с тем, что анализ распространения пепловых облаков и шлейфов от вулканов является сложной междисциплинарной задачей, реализация необходимых методов и технологий исключительно на одной платформе представляется крайне затруднительной. Более эффективным является подход, связанный с организацией взаимодействия между уже действующими информационными системами (ИС) и сервисами, на базе которых развиты необходимые научные компетенции, сформированы архивы специализированных данных и выстроена соответствующая вспомогательная программно-аппаратная инфраструктура. На основе указанного подхода с использованием ресурсов автоматизированной ИС «Сигнал», ИС VOKKIA и ИС VolSatView реализована интегрированная программная платформа, обеспечивающая возможность компьютерного моделирования распространения пепловых облаков и шлейфов от вулканов Камчатки, а также проведение совместного анализа полученных результатов расчетов со спутниковой информацией.
В статье дается описание этой платформы, а также рассматриваются архитектура взаимодействия специализированных прикладных информационных систем, средства и технологии, используемые для проведения компьютерного моделирования, обмена научными данными и работы с ними. Приведены примеры созданных пользовательских интерфейсов для постановки вычислительных задач и проведения совместного анализа результатов расчетов и данных, полученных методами дистанционного зондирования Земли из космоса.

Analysis of the spread of ash clouds and plumes from volcano eruptions is a complex interdisciplinary task, hence implementation of the necessary methods and technologies exclusively on a single platform is extremely difficult. A more efficient approach is associated with the organization of interaction between already existing information systems and services developed on the basis of particular scientific competence and specialized data archives formed and built in the corresponding supporting software and hardware infrastructure. Based on this approach, a software platform was implemented integrating three information systems: Signal, VOKKIA and VolSatView. The platform provides computer modeling of ash clouds and plumes from the volcanoes of Kamchatka, and joint analysis of modeling calculation results with remote sensing data. The paper describes the platform, and the architecture of interaction of specialized applications and information systems, tools and technologies used for computer modeling, exchange of scientific data and working with them. The article includes examples of user interfaces for setting computing tasks and conduct joint analysis of modeling results using the data obtained by remote sensing of the Earth from space.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru