Main Volcanoes Kamen

Links

Go to
Bezymianny Klyuchevskoy
Kamen Volcano. Bibliography

 
Records: 37
Pages:  1 2 3 4
Churikova T., Gordeychik B., Wörner G., Ivanov B., Maximov A. Mineralogy and petrology of Kamen volcano rocks, Kamchatka // Mitigating natural hazards in active arc environments. Linkages among tectonism, earthquakes, magma genesis and eruption in volcanic arcs, with a special focus on hazards posed by arc volcanism and great earthquakes. June 22-26, 2009, Fairbanks, Alaska. 2009. P. 117-118.
Churikova T., Gordeychik B., Wörner G. Mantle and fluid sources below Klyuchevskoy-Kamen-Bezymianny line (Kamchatka) // Geofluid-3. Nature and Dynamics of fluids in Subduction Zones. Tokyo, Japan, February 28 - March 3, 2014. 2014. P. 72    Annotation
Kamen volcano is an extinct volcanic complex located in the central part of the Klyuchevskaya group of volcanoes (KGV) between active Klyuchevskoy, Bezymianny, and Ploskie Sopky volcanoes. Kamen volcano was mapped by V.A. Ermakov only in the 1970s. However the modern geochemical studies of Kamen volcano have not been previously carried out and its relationship and petrogenesis in comparison to other active neighbors are unknown. A modern geochemical study of Kamen volcano is needed because it will shed light not only on the history of the volcano itself and its closest neighbors, but also on the history and magmatic evolution of the KGV melts in general. The distance between the summits of Kamen and Klyuchevskoy is only 5 km, the same as between Kamen and Bezymianny. The close relationship in space and time of the KGV and the common zone of seismicity below them suggests a common source and a possible genetic relationship between their magmas. However, the Late-Pleistocene-Holocene lavas of all these neighboring volcanoes are very different: high-Mg and high-Al Ol-Cpx-Pl basalts and basaltic andesites occur at Klyuchevskoy volcano, and Hbl-bearing andesites and dаcites dominate at Bezymianny volcano. The rocks of Ploskie Sopky volcano, situated only 10 km NW of Kamen, are represented by medium-high-K subalkaline lavas.
Churikova Tatiana G., Gordeychik Boris N., Ivanov Boris V., Wörner Gerhard Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 3 - 21. doi: 10.1016/j.jvolgeores.2013.01.019.    Annotation
Abstract Data on the geology, petrography, mineralogy, and geochemistry of rocks from Kamen Volcano (Central Kamchatka Depression) are presented and compared with rocks from the neighbouring active volcanoes. The rocks from Kamen and Ploskie Sopky volcanoes differ systematically in major elemental and mineral compositions and could not have been produced from the same primary melts. The compositional trends of Kamen stratovolcano lavas and dikes are clearly distinct from those of Klyuchevskoy lavas in all major and trace element diagrams as well as in mineral composition. However, lavas of the monogenetic cones on the southwestern slope of Kamen Volcano are similar to the moderately high-Mg basalts from Klyuchevskoy and may have been derived from the same primary melts. This means that the monogenetic cones of Kamen Volcano represent the feeding magma for Klyuchevskoy Volcano. Rocks from Kamen stratovolcano and Bezymianny form a common trend on all major element diagrams, indicating their genetic proximity. This suggests that Bezymianny Volcano inherited the feeding magma system of extinct Kamen Volcano. The observed geochemical diversity of rocks from the Klyuchevskaya group of volcanoes can be explained as the result of both gradual depletion over time of the mantle N-MORB-type source due to the intense previous magmatic events in this area, and the addition of distinct fluids to this mantle source.
Churikova Tatiana, Wörner Gerhard, Mironov Nikita, Kronz Andreas Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc // Contributions to Mineralogy and Petrology. 2007. V. 154. № 2. P. 217-239. doi:10.1007/s00410-007-0190-z.    Annotation
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE.
Ponomareva Vera V., Melekestsev Ivan V., Dirksen Oleg V. Sector collapses and large landslides on Late Pleistocene–Holocene volcanoes in Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2006. V. 158. № 1-2. P. 117-138. doi:10.1016/j.jvolgeores.2006.04.016.    Annotation
On Kamchatka, detailed geologic and geomorphologic mapping of young volcanic terrains and observations on historical eruptions reveal that landslides of various scales, from small (0.001 km3) to catastrophic (up to 20–30 km3), are widespread. Moreover, these processes are among the most effective and most rapid geomorphic agents. Of 30 recently active Kamchatka volcanoes, at least 18 have experienced sector collapses, some of them repetitively. The largest sector collapses identified so far on Kamchatka volcanoes, with volumes of 20–30 km3 of resulting debris-avalanche deposits, occurred at Shiveluch and Avachinsky volcanoes in the Late Pleistocene. During the last 10,000 yr the most voluminous sector collapses have occurred on extinct Kamen' (4–6 km3) and active Kambalny (5–10 km3) volcanoes. The largest number of repetitive debris avalanches (> 10 during just the Holocene) has occurred at Shiveluch volcano. Landslides from the volcanoes cut by ring-faults of the large collapse calderas were ubiquitous. Large failures have happened on both mafic and silicic volcanoes, mostly related to volcanic activity. Orientation of collapse craters is controlled by local tectonic stress fields rather than regional fault systems.

Specific features of some debris avalanche deposits are toreva blocks — huge almost intact fragments of volcanic edifices involved in the failure; some have been erroneously mapped as individual volcanoes. One of the largest toreva blocks is Mt. Monastyr' — a ∼ 2 km3 piece of Avachinsky Somma involved in a major sector collapse 30–40 ka BP.

Long-term forecast of sector collapses on Kliuchevskoi, Koriaksky, Young Cone of Avachinsky and some other volcanoes highlights the importance of closer studies of their structure and stability.
Siebert L., Simkin T. Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. 2013.
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. 2010. 568 p.    Annotation
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
Виноградов В.Н. Современное оледенение районов активного вулканизма // Результаты исследований по международным геофизическим проектам. / Отв. ред. Котляков В.М. 1975. 105 с.    Annotation
Монография посвящена изучению современных ледников и снежного покрова Камчатки, особенно районов Авачинской и Ключевской групп вулканов. Выявлены специфические черты морфологии, режима и строения этих ледниковых толщ. Рассмотрены формирование рельефа Камчатки, ее климатические условия, морфологические типы и основные черты ледников. Исследовано влияние вулканизма на снежный покров.
Виноградов В.Н., Муравьев Я.Д. Динамика ледников Ключевской группы в связи с извержениями вулканов // Вулканизм и связанные с ним процессы. Вулканическая деятельность, её механизм, связь с геодинамикой, прогноз извержений и землетрясений. Тезисы докладов VI Всесоюзного вулканологического совещания. 1985. Вып. 1. С. 20-21.
Влодавец В.И. Ключевская группа вулканов // Труды Камчатской вулканологической станции. 1940. № 1. С. 2-124.




 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru