Main Volcanoes Khangar

Links
 
Monitoring


Go to
Kronotsky Schmidt
Khangar Volcano. Bibliography

 
Records: 33
Pages:  1 2 3 4
Зубов А.Г., Кирьянов В.Ю. О возможности использования термомагнитных параметров для идентификации вулканических пеплов // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ГЕОС. 2001. С. 267-273.    Annotation
Вулканический пепел - удобный инструмент изучения истории вулканических извержений, поскольку может быть обнаружен на большом расстоянии от источника, сохраняется в захороненном состоянии длительное время,имеет генетически обусловленный минералогический состав. Существенным недостатком подавляющего большинства известных методик исследований пород является их структурная чувствительность. А это препятствует идентификации отложений пеплов единого источника происхождения, но с разной структурой. Чувствительностью к магнито-минеральному составу и отсутствием структурной чувствительности обладает такие термомагнитные параметры как температура Кюри (Tc), намагниченность насыщения и поле насыщения. Наиболее чувствительным для нахождения Tc является анализ температурной зависимости магнитной восприимчивости или индуктивной намагниченности. Наличие пиков вблизи TC для мономинеральных фракций (эффект Гопкинсона) позволяет при работе со смесями магнитных минералов более уверенно определять на кривой индивидуальные для минералов Tc.

Volcanic ash is a useful tool for investigation of the history of volcanic eruptions as it can be found far from
eruptive centers, and is preserved for a long time after initial deposition and has a constant mineral composition.
Imperfection of most methodical investigations of volcanic ashes is their texture sensibility. This factor make difficult
to identify volcanic ashes from the same volcano. Some magnetic properties, saturation magnetization, saturation magnetization field, and Curie Point (Tc) of magnetic minerals, however, are not sensitive to texture, but they are sensitive to magnetic-mineral composition. A more sensitive method for determining the Tc- point is the analysis of the temperature dependence of magnetic susceptibility or of inductive magnetization. The presence of peaks on the curve near the Tc-point for the monomineralic fractions (Hopkinson’s peak) helps to more carefully define individual Tc on the curve for natural mixtures of the different magnetic minerals.
Маренина Т.Ю. Вулкан Хангар в Срединном хребте Камчатки // Труды Лаборатории вулканологии АН СССР. 1959. № 17. С. 3-63.
Мелекесцев И.В. Действующие и потенциально активные вулканы Курило - Камчатской островной дуги в начале XXI в.: этапы исследований, определение термина "действующий вулкан", будущие извержения и вулканическая опасность // Вестник КРАУНЦ. Серия: Науки о Земле. 2006. Вып. 7. № 1. С. 15-35.    Annotation
Выделены и рассмотрены три этапа исследований действующих и потенциально активных вулканов Камчатки и Курильских островов – ранний (1700-1935 гг.), новый (1935-1962 гг.) и новейший (1962 г.- настоящее время). Дано новое, впервые научно обоснованное определение термина «действующий вулкан». Представлены модифицированные каталоги действующих и потенциально активных вулканов Камчатки и Курильских островов. Для типичных вулканов, находящихся в I и II стадиях развития, даны долгосрочный прогноз характера и параметров будущих извержений, связанной с ними вулканической опасности.

Three stages of study of active and potentially active volcanoes on Kamchatka and the Kurile Islands were distinguished: the anterior stage (1700-1935), the new stage (1935-1962) and the recent stage (from 1962 till present time).
This paper provides a new, for the first time scientifically based term of «active volcano». Updated catalogues display active and potentially active volcanoes of Kamchatka and the Kurile Islands. Here we propose a long-term forecast of behavior and parameters of impending eruptions and related volcanic hazards for the typical volcanoes of the 1st and the 2nd stages of evolution.
Мелекесцев И.В., Брайцева О.А., Базанова Л.И., Пономарева В.В., Сулержицкий Л.Д. Особый тип катастрофических эксплозивных извержений - голоценовые субкальдерные извержения Хангар, Ходуткинский "маар", Бараний Амфитеатр (Камчатка) // Вулканология и сейсмология. 1996. № 2. С. 3-24.    Annotation
Катастрофические эксплозивные извержения Хангар (~7000 14С-л. н.), Ходуткинский "маар" (~28ОО 14С-л. н.), Бараний Амфитеатр (~ 1500 14С-л. н.) выделены в особый тип субкальдерных извержений. По динамике, объему (1,5-15 км^3), облику, набору фаций и составу (от дацитов до риолитов) пирокластики они были аналогами кальдерообразующих извержений, но не сопровождались возникновением кальдер обрушения, объем полостей которых соответствовал бы объему выброшенной пирокластики в пересчете на твердую породу - магму. Несоответствие между "кальдерным" обликом пирокластики и типом эруптивного аппарата (эксплозивным кратером) объясняется, вероятно, значительной глубиной очагов кислой магмы, "гальванизированных" при внедрении в них высокотемпературной базальтовой магмы. Субкальдерные извержения начинались с мощного выброса тефры, резко преобладавшей по объему над другими вулканическими продуктами, затем формировались пирокластические потоки, с которыми ассоциировались пирокластические волны (pyroclastic surges). Такое повторение событий в ходе извержения было неоднократным. Большеобъемные взрывные брекчии не образовывались. Зоны интенсивного пеплопада охватывали площади n * 10^4 ... n * 10^5 км^2, поэтому датированные прослои тефры служат прекрасными региональными маркирующими горизонтами. Предполагается, что субкальдерные извержения влияли на климат Земли и нашли отражение в Гренландском ледниковом щите в виде синхронных кислотных пиков.

The devestating explosive eruptions at Khangar (about 7000 14C BP), Khodutkinskiy "maar" (about 2800 14C BP), and Baraniy Amphitheater (about 1500 14C BP) are classified into a special type, subcaldera eruptions. They were analogues of caldera-forming eruptions by their dynamics, erupted volume (1.5-15 km^3), aspect, facies family, and the composition {from dacites to rhyolites) of the pyroclastics, but were not followed by the development of collapse calderas whose cavity volumes would fit the volume of discharge pyroclastics when converted to solid rock (magma). The discrepancy between a "caldera-like" aspect of the pyroclastics and the type of erupting vent can probably be explained by the greal depths of reservoirs of silicic magma which were "galvanized" when hot basaltic magma was injected into them. A subcaldera eruption usually began with a violent discharge of tephra, much greater in volume than the other volcanic products, to be followed by the formation of pyroclastic flows associated with pyrociastic surges. This sequence of events repeated itself several times during the eruption. No major explosion breccias were formed. Intensive ashfall involved areas of n * 10^4 ... n * 10^5 km^2, so that dated tephra beds have been excellent regional marker horizons. Subcaldera eruptions are hypothesized to have influenced the Earth's climate and are reflected as synchronous acid peaks in the Greenland glacier shield.
Мелекесцев И.В., Брайцева О.А., Пономарева В.В., Базанова Л.И., Пинегина Т.К., Дирксен О.В. 0-650 гг. - этап сильнейшего природного катастрофизма нашей эры на Камчатке // Вулканология и сейсмология. 2003. Вып. 6. № 6. С. 3-23.    Annotation
Впервые выделен и описан этап сильнейшего в нашей эре многофакторного природного катастро-физма на Камчатке, датированный 0-650 гг. Его главными компонентами были: последние к настоящему времени катастрофические извержения (кальдерообразующее -240 г., объем пирокластики 18-19 км3, и субкальдерное -600 г., объем лавы и пирокластики 9.5-10.5 км3), которые сопровождались необратимыми изменениями рельефа на площадях в сотни км2 и оказали весьма негативное влияние на многие другие компоненты природной среды.; исключительно интенсивная активность других вулканов (извергалось не менее 75-80% всех действующих и потенциально активных вулканов Камчатки, произошли десятки сильных и катастрофических извержений); региональные катастрофические и сильные пеплопады; резкое, с большой амплитудой (от 1.5-2 до 12-15 м), тектоническое поднятие различных блоков на территории Камчатки; мощные землетрясения, сопровождавшиеся болыиеобъемными скальными обвалами, оползнями, сильными и частыми цунами. Допускается, что катастрофические события этого времени являются составной частью предполагаемого нами глобального этапа природного катастрофизма начала нашей эры.

We have identified, and describe in this paper, a phase of multifactor natural catastrophism that has been the greatest during our era in Kamchatka, to be dated 0-650 A. D. Its chief components were. The last catastrophic eruptions to have occurred (a caldera-generating one at about 240 A. D., the pyroclastics volume being 18-19 km3 and a subcaldera one around 600 A. D. with the volume of lava and pyroclastics 9.5-10.5 km3) which were followed by irreversible relief changes over areas of hundreds of square kilometers and have affected rather injuriously many other environmental components. An exceptionally intensive activity of the other volcanoes (at least 75-80% of all active and potebtially active Kamchatkan volcanoes were erupting, tens of large and catastrophic eruptions occurred). Regional catastrophic and large ashfalls. A sharp, large-amplitude (between 1.5-2 and 12-15 m) tectonic uplift of various blocks in Kamchatka. Large earthquakes accompanied by large-volume rockfalls, landslides, large and frequent tsunamis. The catastrophic events of that time are argued to have been part of a worldwide phase of natural catastrophism that we hypothesize to have occurred at the beginning of our era.
Набоко С.И. Современные вулканы и газо-гидротермальная деятельность // Геология СССР. 1964. Т. 31. С. 303-372.
Новейший и современный вулканизм на территории России / Отв. ред. Лаверов Н.П. 2005. 604 с.    Annotation
В монографии изложены материалы теоретических и экспериментальных исследований по комплексной проблеме, связанной с изучением вулканической опасности и развитием методов прогнозирования катастрофических извержений.
Проанализирован вулканизм Камчатки и других регионов России. На основе тефрохронологических и геолого-вулканологических исследований выделены группы вулканов, находящиеся на разных стадиях развития.
Достаточно внимания уделено решению проблем изучения структуры вулканической постройки с использованием современных теоретических методов и аппаратурных средств. Развиваются новые технологии оценки вулканической опасности. Теоретические материалы по мере необходимости иллюстрируются данными натурных наблюдений.
В книге даны черно-белые фотографии, расположенные по ходу текста, и цветные иллюстрации, собранные в отдельный блок; кроме того, в книгу вложены два листа карт, иллюстрирующих соответствующие главы.
Издание адресовано специалистам в области наук о Земле, вулканологии, геомеханики, экологии, строительства и чрезвычайных ситуаций.
Новограбленов П.Т. Каталог вулканов Камчатки // Известия Государственного географического общества. 1932. Т. 64. Вып. 1. С. 88-99.
Певзнер М.М., Волынец А.О. Голоценовый вулканизм Срединного хребта Камчатки // Проблемы эксплозивного вулканизма (к 50-летию катастрофического извержения вулкана Безымянный). Материалы первого международного симпозиума. Петропавловск-Камчатский, 25-30 марта 2006 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2006. С. 124-132.    Annotation
Numerous Holocene volcanic centres (5 stratovolcanoes, including 4 active and potentially dangerous, and 12 monogenetic centres) are discovered within Sredinny Range of Kamchatka. Their exact ages are determined. Spatial and temporal characteristics, as well as composition of Holocene volcanic rocks witness against direct connection of magma genesis with contemporary Pacific plate subduction. Sub-meridional chronological trends and elements of grouping, identified for Holocene volcanic activity of Sredinny Range of Kamchatka, may indicate seismo-geodynamical nature of young volcanic activity and associated with it advection in the extinct island arc system.
Певзнер М.М., Пономарева В.В., Мелекесцев И.В. Черный Яр - реперный разрез голоценовых маркирующих пеплов северо-восточного побережья Камчатки // Вулканология и сейсмология. 1997. № 4. С. 3-18.    Annotation
В результате тефрохронологических и радиоуглеродных исследований почвенно-пирок-ластических чехлов по профилю вулкан Шивелуч - Черный Яр - остров Беринга в них удалось выделить и идентифицировать пеплы крупнейших (за последние 6500 лет) извержений вулкана Шивелуч в юго-восточном секторе их распространения, а также пеплы вулканов Безымянный, Ксудач, Ключевской, Авачинский и Хангар. Детальное радиоуглеродное датирование торфяника Черного Яра позволило не только уточнить возраст самих извержений, но и определить частоту пеплопадов для района нижнего течения реки Камчатки, которая составляет в среднем 1 пеплопад за 191 год. Помимо тефры 1964 г., предлагается использовать в качестве региональных геохронологических маркеров горизонты пеплов вулкана Шивелуч, имеющие следующий округленный радиоуглеродный возраст: 265 (Ш]), 965 (Ш2), 1450, 2800, 3600 (СП), 4105 (Шдв), 4800, а также пеплы вулканов Ксудач - 1806 (КС,) и Авачинский - 5489 (АВ2) лет.

Tephrochronological and radiocarbon investigations of soil-pyroclastic depositsalong the line Shiveluch Volcano - Chernyi Yar - Bering I. have detected and identified the ashes oflargest (for the past 6500 years) eruptions on Shiveluch Volcano in the southeastern sector of the ashabundance area, as well as the ashes of Bezymyannyi, Ksudach, Klyuchevskoi, Avacha and Khangarvolcanoes. A detailed radiocarbon dating of peat deposits in Chernyi Yar has not only improved the agedeterminations of the eruptions themselves but also helped in the determination of ash fall rate for thelower Kamchatka R. valley, namely, once in 191 years. Apart from the 1964 tephra, we suggest for useas regional geochronological markers the ash horizons of Shiveluch Volcano having the followingrounded radiocarbon dates: 265 (SH1), 965 (SH2), 1450, 2800, 3600 (SP), 4105 (SHDV), 4800, as well asthe ashes from Ksudach 1806 (KS1) and Avacha 5489 (AV2) volcanoes.




 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru