Plosky Tolbachik Volcano. Bibliography
Group by:  
Records: 316
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Ponomareva Vera, Portnyagin Maxim, Derkachev Alexander, Pendea I. Florin, Bourgeois Joanne, Reimer Paula J., Garbe-Schönberg Dieter, Krasheninnikov Stepan, Nürnberg Dirk Early Holocene M~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records // International Journal of Earth Sciences. 2013. Vol. 102. № 6. P. 1673-1699. doi:10.1007/s00531-013-0898-0.
   Annotation
We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.
Portnyagin Maxim, Duggen Svend, Hauff Folkmar, Mironov Nikita, Bindeman Ilya, Thirlwall Matthew, Hoernle Kaj Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 133 - 155. doi: 10.1016/j.jvolgeores.2015.08.015.
   Annotation
Abstract We present new major and trace element, high-precision Sr–Nd–Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975–1976 and 2012–2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain ~ 14 wt. of MgO and ~ 4 wt. of {H2O} and originated by partial melting (~ 6) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of ~ 1250 °C and pressure of ~ 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at ~ 2.8 {GPa} and ~ 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012–2013 approach steady-state {REFC} liquid compositions at different eruption or replenishment rates. Intermediate rocks, including high-K, high-Mg basalts, are formed by mixing of the evolved and primitive magmas. Evolution of Tolbachik magmas is associated with large fractionation between incompatible trace elements (e.g., Rb/Ba, La/Nb, Ba/Th) and is strongly controlled by the relative difference in partitioning between crystal and liquid phases. The Tolbachik volcanic field shows that open-system scenarios provide more plausible and precise descriptions of long-lived arc magmatic systems than simpler, but often geologically unrealistic, closed-system models.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. 2007. Vol. 255. № 1-2. P. 53-69. doi: 10.1016/j.epsl.2006.12.005.
   Annotation
New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel, Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc // Earth and Planetary Science Letters. 2007. Т. 255. № 1-2. С. 53-69. doi:10.1016/j.epsl.2006.12.005.
Rulenko O.P. Volcanic Cloud Electrification // Volcanology and Seismology. 1988. Vol. 7. № 2. P. 253-272.
Senyukov S.L., Nuzhdina I.N., Droznina S.Ya., Garbuzova V.T., Kozhevnikova T.Yu., Sobolevskaya O.V., Nazarova Z.A., Bliznetsov V.E. Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)" // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 47 - 59. doi: 10.1016/j.jvolgeores.2015.07.026.
   Annotation
Abstract The active basaltic volcano Plosky Tolbachik (Pl. Tolbachik) is located in the southern part of the Klyuchevskoy volcano group on the Kamchatka Peninsula. The previous 1975–1976 Great Tolbachik Fissure Eruption (1975–1976 GTFE) occurred in the southern sector of Pl. Tolbachik. It was preceded by powerful earthquakes with local magnitudes between 2.5 and 4.9 and it was successfully predicted with a short-term forecast. The Kamchatka Branch of Geophysical Survey (KBGS) of the Russian Academy of Science (RAS) began to publish the results of daily seismic monitoring of active Kamchatka volcanoes on the Internet in 2000. Unlike the 1975–1976 {GTFE} precursor, (1) seismicity before the 2012–2013 Tolbachik Fissure Eruption (2012–2013 TFE) was relatively weak and earthquake magnitudes did not exceed 2.5. (2) Precursory earthquake hypocenters at 0–5 km depth were concentrated mainly under the southeastern part of the volcano. (3) The frequency of events gradually increased in September 2012, and rose sharply on the eve of the eruption. (4) According to seismic data, the explosive-effusive 2012–2013 {TFE} began at ~ 05 h 15 min {UTC} on November 27, 2012; the outbreak occurred between the summit of the Pl. Tolbachik and the Northern Breakthrough of the 1975–1976 GTFE. (5) Because of bad weather, early interpretations of the onset time and the character of the eruption were made using seismological data only and were confirmed later by other monitoring methods. The eruption finished in early September 2013. This article presents the data obtained through real-time seismic monitoring and the results of retrospective analysis, with additional comments on the future monitoring of volcanic activity.
Simakin Alexander, Salova Tamara, Devyatova Vera, Zelensky Michael Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 210 - 221. doi: 10.1016/j.jvolgeores.2015.10.018.
   Annotation
Abstract Historical basaltic eruptions of Tolbachik volcano (Kamchatka) are of a medium to high potassic type. The potassic character of magmatism can be attributed to the influence of CO2–CO-rich fluid at or near the magma generation depths. Decarbonatization reactions in the mantle under Tolbachik producing a column of the carbonic fluids may be connected with the recent accretion of Kronotsky paleoarc with carbonates dragged under the mantle wedge. With thermodynamic modeling, we show that reduced carbonic fluid at fO2 < {NNO} may be a good carrier of nickel transported in the form of Ni(CO)4. This carbonyl is expected to become thermally stable near the magmatic temperatures at pressures above 1 GPa. In the crust, it is predicted to be thermally stable within the {PT} field of the amphibolite facies. We connect the particles of native Ni and Ag–Pt alloy observed in the volcanic aerosols from the 2012–13 Tolbachik eruption with flushing of the ascending Tolbachik magma with reduced carbonic fluids enriched with {PGE} and Ni. Native metals may form by the thermal decomposition of the carbonyls and other carbon-bearing compounds dissolved in the fluid.
Telling J., Flower V.J.B., Carn S.A. A multi-sensor satellite assessment of SO2 emissions from the 2012–13 eruption of Plosky Tolbachik volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 98 - 106. doi: 10.1016/j.jvolgeores.2015.07.010.
   Annotation
Abstract Prolonged basaltic effusive eruptions at high latitudes can have significant atmospheric and environmental impacts, but can be challenging to observe in winter conditions. Here, we use multi-sensor satellite data to assess sulfur dioxide (SO2) emissions from the 2012–2013 eruption of Plosky Tolbachik volcano (Kamchatka), which lasted ~ 9–10 months and erupted ~ 0.55 km3 DRE. Observations from the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), the Atmospheric Infrared Sounder (AIRS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate volcanic activity, SO2 emissions and heat flux associated with the effusion of lava flows. Gaps in the primary OMI SO2 time-series dataset occurred due to instrument limitations and adverse meteorological conditions. Four methods were tested to assess how efficiently they could fill these data gaps and improve estimates of total SO2 emissions. When available, using data from other {SO2} observing instruments was the most comprehensive way to address these data gaps. Satellite measurements yield a total SO2 loading of ~ 200 kt SO2 during the 10-month Plosky Tolbachik eruption, although actual SO2 emissions may have been greater. Based on the satellite SO2 measurements, the Fast Fourier Transform (FFT) multi-taper method (MTM) was used to analyze cyclical behavior in the complete data series and a 55-day cycle potentially attributable to the eruptive behavior of Plosky Tolbachik during the 2012 – 2013 eruption was identified.
VONA/KVERT Information Releases. 2005.
Volcano observatory notification to aviation (VONA/KVERT). 2011.