Plosky Tolbachik Volcano. Bibliography
Group by:  
Records: 303
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Albert Sarah, Fee David, Firstov Pavel, Makhmudov Evgeniy, Izbekov Pavel Infrasound from the 2012–2013 Plosky Tolbachik, Kamchatka fissure eruption // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 68 - 78. doi: 10.1016/j.jvolgeores.2015.08.019.
   Annotation
Abstract We use both regional and local infrasound data to investigate the dynamics of the 2012–2013 eruption of Tolbachik Volcano, Kamchatka, Russia during select periods of time. Analysis of regional data recorded at the {IMS} array {IS44} in southern Kamchatka, ~ 384 km from the vent focuses on the eruption onset in November 2012, while analysis of local data focuses on activity in February and August 2013. Signals recorded from Tolbachik suggest a change in eruptive intensity possibly occurred from November 27–30, 2012. Local infrasound data recorded at distances of 100–950 m from the vent are characterized primarily by repeated, transient explosion signals indicative of gas slug bursts. Three methods are employed to pick slug burst events in February and August. The nature of slug bursts makes a monopole acoustic source model particularly fitting, permitting volume outflux and slug radius calculations for individual events. Volume outfluxes and slug radii distributions provide three possible explanations for the eruption style of Tolbachik Volcano from mid-February to late August. Cumulative outflux for slug bursts (i.e. mass of emissions from individual bursts) derived by infrasound for both February and August range from < 100 to ~ 3000 kg. These values are greater than infrasound-derived emissions calculated at Pacaya Volcano, but less than those calculated at Mt. Erebus Volcano. From this, we determine slug bursts at Tolbachik Volcano in February and August were larger on average than those at Pacaya Volcano in 2010, but smaller on average than those at Mt. Erebus in 2008. Our overall emissions estimates are in general agreement with estimates from satellite observations. This agreement supports the monopole source inversion as a potential method for estimating mass of emissions from slug burst events.
Belousov A., Belousova M. Dynamics and viscosity of 'a'a and pahoehoe lava flows of the 2012-13 eruption of Tolbachik volcano, Kamchatka, Russia // Bulletin of Volcanology. 2018. Vol. 80. № 6.
Belousov Alexander, Belousova Marina, Edwards Benjamin, Volynets Anna, Melnikov Dmitry Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 22 - 37. doi: 10.1016/j.jvolgeores.2015.06.013.
   Annotation
Abstract We present a broad overview of the 2012–13 flank fissure eruption of Plosky Tolbachik Volcano in the central Kamchatka Peninsula. The eruption lasted more than nine months and produced approximately 0.55 km3 {DRE} (volume recalculated to a density of 2.8 g/cm3) of basaltic trachyandesite magma. The 2012–13 eruption of Tolbachik is one of the most voluminous historical eruptions of mafic magma at subduction related volcanoes globally, and it is the second largest at Kamchatka. The eruption was preceded by five months of elevated seismicity and ground inflation, both of which peaked a day before the eruption commenced on 27 November 2012. The batch of high-Al magma ascended from depths of 5–10 km; its apical part contained 54–55 wt. SiO2, and the main body 52–53 wt. SiO2. The eruption started by the opening of a 6 km-long radial fissure on the southwestern slope of the volcano that fed multi-vent phreatomagmatic and magmatic explosive activity, as well as intensive effusion of lava with an initial discharge of > 440 m3/s. After 10 days the eruption continued only at the lower part of the fissure, where explosive and effusive activity of Hawaiian–Strombolian type occurred from a lava pond in the crater of the main growing scoria cone. The discharge rate for the nine month long, effusion-dominated eruption gradually declined from 140 to 18 m3/s and formed a compound lava field with a total area of ~ 36 km2; the effusive activity evolved from high-discharge channel-fed 'a'a lavas to dominantly low-discharge tube-fed pahoehoe lavas. On 23 August, the effusion of lava ceased and the intra-crater lava pond drained. Weak Strombolian-type explosions continued for several more days on the crater bottom until the end of the eruption around 5 September 2013. Based on a broad array of new data collected during this eruption, we develop a model for the magma storage and transport system of Plosky Tolbachik that links the storage zones of the two main genetically related magma types of the volcano (high-Al and high-Mg basalts) with the clusters of local seismicity. The model explains why precursory seismicity and dynamics of the 2012–13 eruption was drastically different from those of the previous eruption of the volcano in 1975–76.
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Litasova S.N. The history reconstruction of volcanic activity in the Tolbachik regional zone of scoria cones deduced from detalled tephra and geochronological investications // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 47-48.
Braitseva O.A., Ponomareva V.V., Melekestsev I.V., Sulerzhitskiy L.D., Pevzner M.M. Holocene Kamchatka volcanoes. 2002.
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. Vol. 35. № 3. P. 463-476.
   Annotation
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Caudron Corentin, Taisne Benoit, Kugaenko Yulia, Saltykov Vadim Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 60 - 67. doi: 10.1016/j.jvolgeores.2015.09.010.
   Annotation
Abstract In contrast of the 1975–76 Tolbachik eruption, the 2012–13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at ~ 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16–20 km to the south of Plosky Tolbachik at 20:31 {UTC} on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975–76 Tolbachik eruption and can be considered as a possible aborted eruption.
Chaplygin Ilya, Yudovskaya Marina, Vergasova Lidiya, Mokhov Andrey Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 200 - 209. doi: 10.1016/j.jvolgeores.2015.08.018.
   Annotation
Abstract Aggregates and euhedral crystals of native gold were found in sublimates formed during New Tolbachik Fissure Eruption in 2012–2013 (NTFE). Gold-bearing sublimate samples were taken from a red-hot (690 °C) degassing fracture in the roof of an active lava tunnel 1.5 km from active Naboko cinder cone in May 2013. The gas condensate collected at 690 °C in this site contains 16 ppb Au, 190 ppb Ag and 1180 ppm Cu compared to 3 ppb Au, 39 ppb Ag and 9.7 ppm Cu in the condensate of pristine magmatic gas sampled at 1030 °C. The 690 °C volcanic gas is most likely a mix of magmatic gas and local snow buried under the lava flows as indicated by oxygen and hydrogen isotope compositions of the condensate. The lower-temperature gas enrichment in gold, copper and chlorine is resulted from evaporation of the 690 °C condensate during forced gas pumping at sampling. Native gold was also found in fumarolic encrustations collected from caverns in basalt lava flows with temperature up to 600 °C in June 2014, in a year after eruption finished. The native gold precipitation in newly formed Cu-rich sublimates together with the well known gold occurrences in cinder cones of 1975–1976 Large Tolbachik Fissure Eruption manifest a transport capability of oxidized volcanic gas.
Churikova T., Dorendorf F., Wörner G. Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation // Journal of Petrology. 2001. Vol. 42. № 8. P. 1567-1593. doi:10.1093/petrology/42.8.1567.
   Annotation
Major and trace element and Sr–Nd–Pb isotopic variations in mafic volcanic rocks hve been studied in a 220 km transect across the Kamchatka arc from the Eastern Volcanic Front, over the Central Kamchatka Depression to the Sredinny Ridge in the back-arc. Thirteen volcanoes and lava fields, from 110 to 400 km above the subducted slab, were sampled. This allows us to characterize spatial variations and the relative amount and composition of the slab fluid involved in magma genesis. Typical Kamchatka arc basalts, normalized for fractionation to 6% MgO, display a strong increase in large ion lithophile, light rare earth and high field strength elements from the arc front to the back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constant across the arc, which suggests a similar fluid input for Ba and Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc. Rocks from the Central Kamchatka Depression range in 87Sr/86Sr from 0·70334 to 0·70366, but have almost constant Nd isotopic compositions (143Nd/144Nd 0·51307–0·51312). This correlates with the highest U/Th ratios in these rocks. Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like but decrease slightly from the volcanic front to the back-arc. The initial mantle source ranged from N-MORB-like in the volcanic front and Central Kamchatka Depression to more enriched in the back-arc. This enriched component is similar to an ocean-island basalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0 show that degree of melting decreases from the arc front to the Central Kamchatka Depression and remains constant from there to the Sredinny Ridge. Calculated fluid compositions have a similar trace element pattern across the arc, although minor differences are implied. A model is presented that quantifies the various mantle components (variably depleted N-MORB-mantle and enriched OIB-mantle) and the fluid compositions added to this mantle wedge. The amount of fluid added ranges from 0·7 to 2·1%. The degree of melting changes from ∼20% at the arc front to <10% below the back-arc region. The rocks from volcanoes of the northern part of the Central Kamchatka Depression—to the north of the transect considered in this study—are significantly different in their trace element compositions compared with the other rocks of the transect and their source appears to have been enriched by a component derived from melting of the edge of the ruptured slab.
Churikova T., Gordeychik B., Iwamori H., Nakamura H., Ishizuka O., Nishizawa T., Haraguchi S., Yasukawa K., Miyazaki T., Vaglarov B., Ueki K., Toyama C., Chang Q., Kimura J.I. Geology, petrology and geochemistry of the Tolbachik volcanic massif, Kamchatka, Russia // 26th IUGG General Assembly 2015. June 22 - July 2, 2015, Prague, Czech Republic. 2015. P. VS28p-487.
   Annotation
Data on the geology, petrography, and geochemistry of previously geochemically unstudied Middle-Late-Pleistocene rocks from Tolbachik volcanic massif (Central Kamchatka Depression, CKD) are presented. Two volcanic series – middle-K and high-K were erupted. The geochemical history of the massif was started earlier 86 ka (K-Ar dating) with the formation of the Tolbachik pedestal presented by middle-K series. During stratovolcanoes formation both series occur and the role of high-K melts was increasing with time. In Holocene high-K rocks are dominated but some cinder cone lavas are presented by middle-K high-Mg melts which suggest that both volcanic series are still exists. The computer modeling show that both series can be explained by the process of crystal fractionation at different water content from nearly or the same mantle source similar to high-Mg basalts of 1975 Northern Breakthrough. Middle-K rocks could crystallize at water-rich conditions (more than 2% of H2O) while the high-K rock could crystallize at dry conditions at the same pressure. However the existence of different mantle sources and possible magma mixing cannot be excluded. Our data show that fractional crystallization at different P-T-H2O-fO2 conditions can be one of the main processes responsible for rock variations at CKD. Sr-Nd-Pb isotopes suggest 2-4% of crustal assimilation to the magma chamber during pedestal and stratovolcanoes formation while lava-cinder cones are not show evidences of crustal assimilation. Major and trace element data coupled with K-Ar dating provide strong evidence that Povorotnaya mount located in 8 km NE of Plosky Tolbachik is the old block of the Tolbachik massif pedestal and for the moment the oldest known object (306 ka by K-Ar dating) in Klyuchevskaya group.

Geology, petrology and geochemistry of the Tolbachik volcanic massif, Kamchatka, Russia. Available from: https://www.researchgate.net/publication/282656425_Geology_petrology_and_geochemistry_of_the_Tolbachik_volcanic_massif_Kamchatka_Russia [accessed Jun 19, 2017].