Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 24
Страницы:  1 2
 R
RESTful Web Service for Kamchatka Volcanoes Observations (2014)
Sorokin A.A., Korolev S.P., Romanova I.M., Girina O.A., Urmanov I.P. RESTful Web Service for Kamchatka Volcanoes Observations // Modern Information Technologies in Earth Sciences. Proceedings of the International Conference. September 8-13, 2014, Petropavlovsk-Kamchatsky. Vladivostok: Dalnauka. 2014. P. 155
Radiocarbon dating and tephrochronology in Kamchatka (1993)
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. V. 35. № 3. P. 463-476.    Аннотация
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Radiocarbon dating of holocene eruptions of the Elbrus Volcano in the northern Caucasus, Russia (1998)
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Sulerzhitskii L.D., Katov D.M., Puriga A.I. Radiocarbon dating of holocene eruptions of the Elbrus Volcano in the northern Caucasus, Russia // Doklady Earth Sciences. 1998. V. 363. № 8. P. 1093-1095.
http://repo.kscnet.ru/1114/ [связанный ресурс]
Radiocarbon dating of large Holocene volcanic events within South Kamchatka (Russian Far East) (2007)
Zaretskaya N.E., Ponomareva V.V., Sulerzhitsky L.D. Radiocarbon dating of large Holocene volcanic events within South Kamchatka (Russian Far East) // Radiocarbon. 2007. V. 49. № 2. P. 1065-1078.    Аннотация
Radiocarbon dating is widely used when studying recent volcanic activity in the Kamchatka Peninsula due to the abundance of organic matter that is associated with the volcanic deposits. Here, we present the results of 14C dating of major volcanic events within the active South Kamchatka volcanic zone. South Kamchatka includes 8 recently active volcanic centers (stratovolcanoes, calderas, and large craters) that have been erupting during the Holocene. Their tephras represent useful markers for both the southern part of the peninsula and the Northern Kurile Islands. Since these marker tephra layers facilitate stratigraphic and tephrochronological studies in this area, it was important to determine their ages. We have obtained 73 new individual 14C dates on paleosol, peat, charcoal, and wood associated with the marker tephra layers, then complemented these data with 37 earlier published dates and analyzed the resulting data set. We selected the reliable dates and then obtained average 14C ages of marker tephra layers. The details of these procedures, as well as brief descriptions of South Kamchatka Holocene eruptions and their tephra beds, are presented in the paper.
Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography (2013)
Koulakov Ivan, Gordeev Evgeniy I., Dobretsov Nikolay L., Vernikovsky Valery A., Senyukov Sergey, Jakovlev Andrey, Jaxybulatov Kayrly Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 75 - 91. doi: 10.1016/j.jvolgeores.2012.10.014.    Аннотация
We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka, Russia. We consider the time period from 1999 to 2009, which covers several stages of activity of Kluchevskoy and Bezymianny volcanoes. The results are supported by synthetic tests that recover a common 3D model based on data corresponding to different time windows. Throughout the period, we observe a robust feature below 25 km depth with anomalously high Vp/Vs values (up to 2.2). We interpret this feature as a channel bringing deep mantle materials with high fluid and melt content to the bottom of the crust. This mantle channel directly or indirectly determines the activity of all volcanoes of the Kluchevskoy group. In the crust, we model complex structure that varies over time. During the pre-eruptive period, we detected two levels of potential magma storage: one in the middle crust at 10–12 km depth and one close to the surface just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymiyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no strong anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in the stress and deformation states, which cause fracturing and the active transport of fluids. These fluids drive more fracturing in a positive feedback system that ultimately leads to eruption. We envision the magma reservoirs beneath the Kluchevskoy group as sponge-structured volumes that may quickly change the content of the molten phases as fluids pulse rapidly through the system.
Recent eruptions at Bezymianny volcano — a seismological comparison (2013)
West Michael E. Recent eruptions at Bezymianny volcano — a seismological comparison // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 42 - 57. doi: 10.1016/j.jvolgeores.2012.12.015.    Аннотация
Abstract For the past few decades, Bezymianny volcano has erupted once to twice per year. Here, I examine eight eruptive events between 2006 and 2010. This is the first time period for which proximal or broadband seismic data have been recorded at Bezymianny. Several recurring patterns are demonstrated in advance of eruptions. Eruptions are generally preceded by 12–36 h of tremor energy elevated by 2 to 3 orders of magnitude. Locatable earthquake activity is quite erratic in the days before eruptions. For eruptions of juvenile magma, however, the cumulative moment magnitude increases with the repose time since the previous eruption. Though tenuous, this relationship is statistically significant and could improve forecasts of Bezymianny eruptions. The most energetic eruptions demonstrate increasing multiplet activity in the run-up, followed by a rapid cessation at the time of eruption. When present, this behavior marks increasing pressure in the conduit system as degassing eclipses the capacity for venting. Very long period seismicity (> 20 s periods) accompanies some eruptions. These tend to be the same short-lived high-energy eruptions that exhibit multiplet precursors. Four eruptions are examined in detail to illustrate the variety in eruption mechanisms. Lava dome collapses, sustained eruptions, singular paroxysmal explosions and post-explosion lava flows occur in different combinations demonstrating that more than one eruption trigger is regulating Bezymianny. Compared to Bezymianny's fifty-year modern history, recent eruptions have been shorter-lived and separated by longer repose times. Some evidence suggests that these eruptions may be increasingly explosive—a speculation that carries significant hazard implications. If true, however, this threat is tempered by solid evidence that the most explosive eruptions are preceded by the clearest precursors, suggesting an ability to improve the already excellent eruption forecasts available for Bezymianny.
Reconstruction of the eruptive activity of Momotombo volcano (Nicaragua) to assess volcanic hazards (1988)
Kirianov V.Yu., Melekestsev I.V., Andreev V.N., Ovsyannikov A.A. Reconstruction of the eruptive activity of Momotombo volcano (Nicaragua) to assess volcanic hazards // Kagoshima International Conference on Volcanoes: Proceedings of the International Conference on Volcanoes, Japan, Kagoshima, 19-23 July 1988. Kagoshima: Kagoshima Prefectural Government. 1988. P. 495-498.
Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka (2011)
Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Y.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka // Annaly of Glaciology . 2011. V. 52. № 58. P. 44-50. doi: 10.3189/172756411797252149.    Аннотация
The Sea of Okhotsk is the southernmost area in the Northern Hemisphere where seasonal sea ice is produced every year. The formation of sea ice drives thermohaline circulation in the Sea of Okhotsk, and this circulation supports the high productivity in the region. However, recent reports have indicated that sea-ice production in the Sea of Okhotsk is decreasing, raising concern that the decreased sea ice will affect not only circulation but also biological productivity in the sea. To reconstruct climatic changes in the Sea of Okhotsk region, we analyzed an ice core obtained from Ichinskaya Sopka (Mount Ichinsky), Kamchatka. We assumed that the remarkable negative peaks of δD in the ice core were caused by expansion of sea ice in the Sea of Okhotsk. Melt feature percentage (MFP), which indicates summer snowmelt, showed high values in the 1950–60s and the mid-1990s–2000s. The high MFP in the 1950–60s was assumed to be caused by an increase in cyclone activity reaching Kamchatka during a negative period of the Pacific Decadal Oscillation index, and that in the 1990–2000s may reflect the increase in solar irradiation during a positive period of the summer Arctic Oscillation index.
Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik (2015)
Simakin Alexander, Salova Tamara, Devyatova Vera, Zelensky Michael Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 210 - 221. doi: 10.1016/j.jvolgeores.2015.10.018.    Аннотация
Abstract Historical basaltic eruptions of Tolbachik volcano (Kamchatka) are of a medium to high potassic type. The potassic character of magmatism can be attributed to the influence of CO2–CO-rich fluid at or near the magma generation depths. Decarbonatization reactions in the mantle under Tolbachik producing a column of the carbonic fluids may be connected with the recent accretion of Kronotsky paleoarc with carbonates dragged under the mantle wedge. With thermodynamic modeling, we show that reduced carbonic fluid at fO2 < {NNO} may be a good carrier of nickel transported in the form of Ni(CO)4. This carbonyl is expected to become thermally stable near the magmatic temperatures at pressures above 1 GPa. In the crust, it is predicted to be thermally stable within the {PT} field of the amphibolite facies. We connect the particles of native Ni and Ag–Pt alloy observed in the volcanic aerosols from the 2012–13 Tolbachik eruption with flushing of the ascending Tolbachik magma with reduced carbonic fluids enriched with {PGE} and Ni. Native metals may form by the thermal decomposition of the carbonyls and other carbon-bearing compounds dissolved in the fluid.
Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Erster Teil. Historischer Bericht nach den Tagebüchern (1890)
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Erster Teil. Historischer Bericht nach den Tagebüchern. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1890.    Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1890 erschienene erste Teil seines Werkes enthält den ausführlichen Bericht seiner Reise nach den Tagebüchern, ein getrennt erscheinender zweiter Teil die systematische Darstellung der Natur und der Geschichte Kamčatkas.
http://repo.kscnet.ru/566/ [связанный ресурс]
http://repo.kscnet.ru/831/ [связанный ресурс]
Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Zweiter Teil. Allgemeines über Kamtschatka (1900)
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Zweiter Teil. Allgemeines über Kamtschatka. St. Petersburg: Buchdruckerei der Kaiserlichen Academie der Wissenschaften. 1900. 273 p.    Аннотация
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1900 erschienene zweite Teil seines Werkes enthält die systematische Darstellung der Natur und der Geschichte Kamčatkas sowie ein geografisches Lexikon.
http://repo.kscnet.ru/564/ [связанный ресурс]
Relations between the of eruptions and the composition of lava as exemplified by Kamchatka and Kuriles Volcanoes (1963)
Vlodavetz V.I., Naboko S.I., Piip B.I. Relations between the of eruptions and the composition of lava as exemplified by Kamchatka and Kuriles Volcanoes // Bulletin of Volcanology. 1963. № 26. P. 100-111.
Relations between the type of eruptions and the composition of lava as exemplified by Kamchatka and Kuriles Volcanoes (1963)
Vlodavetz V.I., Naboko S.I., Piip B.I. Relations between the type of eruptions and the composition of lava as exemplified by Kamchatka and Kuriles Volcanoes // Bulletin of Volcanology. 1963. V. 26. № 1. P. 100-111. doi: 10.1007/BF02597279.
Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) (2013)
Churikova Tatiana G., Gordeychik Boris N., Ivanov Boris V., Wörner Gerhard Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka) // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 3 - 21. doi: 10.1016/j.jvolgeores.2013.01.019.    Аннотация
Abstract Data on the geology, petrography, mineralogy, and geochemistry of rocks from Kamen Volcano (Central Kamchatka Depression) are presented and compared with rocks from the neighbouring active volcanoes. The rocks from Kamen and Ploskie Sopky volcanoes differ systematically in major elemental and mineral compositions and could not have been produced from the same primary melts. The compositional trends of Kamen stratovolcano lavas and dikes are clearly distinct from those of Klyuchevskoy lavas in all major and trace element diagrams as well as in mineral composition. However, lavas of the monogenetic cones on the southwestern slope of Kamen Volcano are similar to the moderately high-Mg basalts from Klyuchevskoy and may have been derived from the same primary melts. This means that the monogenetic cones of Kamen Volcano represent the feeding magma for Klyuchevskoy Volcano. Rocks from Kamen stratovolcano and Bezymianny form a common trend on all major element diagrams, indicating their genetic proximity. This suggests that Bezymianny Volcano inherited the feeding magma system of extinct Kamen Volcano. The observed geochemical diversity of rocks from the Klyuchevskaya group of volcanoes can be explained as the result of both gradual depletion over time of the mantle N-MORB-type source due to the intense previous magmatic events in this area, and the addition of distinct fluids to this mantle source.
Remote Sensing Analysis of the 2015-2016 Sheveluch Volcano Activity (2016)
Webley P, Girina O.A., Shipman J Remote Sensing Analysis of the 2015-2016 Sheveluch Volcano Activity // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP 2016). Fairbanks, Alaska: UAF. 2016. P. 105-106.
Remote sensing and petrological observations on the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka: Implications for reconstruction of the eruption chronology (2015)
Melnikov Dmitry, Volynets Anna O. Remote sensing and petrological observations on the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka: Implications for reconstruction of the eruption chronology // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 89 - 97. doi: 10.1016/j.jvolgeores.2015.09.025.    Аннотация
Abstract We present a reconstruction of the chronological sequence of events that took place during the first days of the 2012–2013 Tolbachik fissure eruption using petrological data and remote sensing methods. We were forced to use this approach because bad weather conditions did not allow direct observations during the first two days of the eruption. We interpreted infrared images from the scanning radiometer {VIIRS} Suomi {NPP} and correlated the output with the results of the geochemical study, including comparison of the ash, deposited at the period from 27 to 29 November, with the samples of lava and bombs erupted from the Menyailov and Naboko vents. We argue that the compositional change observed in the eruption products (the decrease of SiO2 concentration and K2O/MgO ratio, increase of MgO concentration and Mg#) started approximately 24 h after the eruption began. At this time the center of activity moved to the southern part of the fissure, where the Naboko group of vents was formed; therefore, this timeframe also characterizes the timing of the Naboko vent opening. The Naboko group of vents remained active until the end of eruption in September 2013.
Report of the UNESCO volcanological mission to Indonesia in 1963 (1964)
Piip B.I., Tonani F., Suehiro C. Report of the UNESCO volcanological mission to Indonesia in 1963 // Bulletin UNESCO. Paris: Unesco. 1964.
Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)" (2015)
Senyukov S.L., Nuzhdina I.N., Droznina S.Ya., Garbuzova V.T., Kozhevnikova T.Yu., Sobolevskaya O.V., Nazarova Z.A., Bliznetsov V.E. Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)" // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 47 - 59. doi: 10.1016/j.jvolgeores.2015.07.026.    Аннотация
Abstract The active basaltic volcano Plosky Tolbachik (Pl. Tolbachik) is located in the southern part of the Klyuchevskoy volcano group on the Kamchatka Peninsula. The previous 1975–1976 Great Tolbachik Fissure Eruption (1975–1976 GTFE) occurred in the southern sector of Pl. Tolbachik. It was preceded by powerful earthquakes with local magnitudes between 2.5 and 4.9 and it was successfully predicted with a short-term forecast. The Kamchatka Branch of Geophysical Survey (KBGS) of the Russian Academy of Science (RAS) began to publish the results of daily seismic monitoring of active Kamchatka volcanoes on the Internet in 2000. Unlike the 1975–1976 {GTFE} precursor, (1) seismicity before the 2012–2013 Tolbachik Fissure Eruption (2012–2013 TFE) was relatively weak and earthquake magnitudes did not exceed 2.5. (2) Precursory earthquake hypocenters at 0–5 km depth were concentrated mainly under the southeastern part of the volcano. (3) The frequency of events gradually increased in September 2012, and rose sharply on the eve of the eruption. (4) According to seismic data, the explosive-effusive 2012–2013 {TFE} began at ~ 05 h 15 min {UTC} on November 27, 2012; the outbreak occurred between the summit of the Pl. Tolbachik and the Northern Breakthrough of the 1975–1976 GTFE. (5) Because of bad weather, early interpretations of the onset time and the character of the eruption were made using seismological data only and were confirmed later by other monitoring methods. The eruption finished in early September 2013. This article presents the data obtained through real-time seismic monitoring and the results of retrospective analysis, with additional comments on the future monitoring of volcanic activity.
Resolving discordant U–Th–Ra ages: constraints on petrogenetic processes of recent effusive eruptions at Tatun Volcano Group, northern Taiwan (2015)
Zellmer Georg F., Rubin K., Miller C., Shellnut G., Belousov Alexander, Belousova Marina Resolving discordant U–Th–Ra ages: constraints on petrogenetic processes of recent effusive eruptions at Tatun Volcano Group, northern Taiwan // Chemical, Physical and Temporal Evolution of Magmatic Systems. // The Geological Society of London. 2015. V. 422. № 10.1144/SP422.3.
Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction (1985)
Menyailov I.A., Nikitina L.P., Shapar V.N. Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction // Journal of Geodynamics. 1985. V. 3. № 3-4. P. 259 - 274. doi: 10.1016/0264-3707(85)90038-9.    Аннотация
The monitoring of the state of active volcanoes, carried out using different parameters, including geochemical, is very important for studies of deep processes and geodynamics. All changes which occur within the crater before eruptions reflect the magma activation and depend on the deep structure of volcano. This paper gives the results of prolonged monitoring of Ebeko volcano, located in the contact zone between the oceanic and continental plates (the Kurile Island Arc). The geochemical method has been used as the basis for eruption prediction because the increase in the activity of the Ebeko in the period from 1963 to 1967 that ended in a phreatic eruption was not preceded by seismic preparation. Investigations carried out at Ebeko volcano give evidence that change of all the chosen geochemical parameters is a prognostic indicator of a forthcoming eruption. This change depends on the type of eruption, and the deep structure and hydrodynamic regime of the volcano.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru