Главная БиблиографияПо типу публикаций
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   Статьи   |   Книги   |   Разделы книг   |   Диссертации   |   Конференционные материалы   |   Документация   |   Авторские свидетельства   |   Веб-ресурсы   |   Другое   |    Количество записей: 1806
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
Статьи
Kontorovich A.E., Bortnikova S.B., Karpov G.A., Kashirtsev V.A., Kostyreva E.A., Fomin A.N. Uzon volcano caldera (Kamchatka): A unique natural laboratory of the present-day naphthide genesis // Russian Geology and Geophysics. 2011. V. 52. № 8. P. 768 - 772. doi: 10.1016/j.rgg.2011.07.002.    Аннотация
Oil shows from the thermal springs of the Uzon volcano caldera have been studied by gas chromatography–mass spectrometry methods. Based on the composition and distribution of biomarker molecules, their genetic identity with the organic matter of Pliocene–Quaternary deposits has been established. It has been shown that the Uzon caldera is a unique natural laboratory of the present-day oil formation from the organic matter of Pliocene–Quaternary sediments. It has been stated that attempts to consider the compounds forming these oil shows as a product of hydrothermal abiogenic synthesis are absolutely unfounded.
Kopylova G.N., Boldina S.V. On the Relationships of Water-Level Variations in the E-1 Well, Kamchatka to the 2008–2009 Resumption of Activity on Koryakskii Volcano and to Large (M ≥ 5) Earthquakes // Journal of Volcanology and Seismology. 2012. V. 6. № 5. P. 312-328. doi: 10.1134/S074204631205003X.    Аннотация
Abstract—We discuss the water!level variations in the E!1 well for the time period between May 2006 and
2010, inclusive. A trend towards an increasing level at an abnormally high rate occurred from mid!2006 to
December 2009. This increase is regarded as the response of the aquifer of gas!saturated ground water that
exists in the volcanogenic–sedimentary deposits of the Avacha volcano!tectonic depression to volumetric
strain changes during the precursory period and the occurrence of a swarm of small earthquakes ( = 8.3)
in the area of Koryakskii Volcano and to its phreatic eruption. We estimated the volumetric compression as
Δε = –(4.1 × 10–6–1.5 × 10–5) from the amplitude of water!level rise using the elastic parameters of the wa!
ter!saturated rocks. While the strain source was active, we observed a decreasing sensitivity of the hydrologic
regime in the well to the precursory processes before large (M ≥ 5.0) tectonic earthquakes.
Koulakov Ivan, Gordeev Evgeniy I., Dobretsov Nikolay L., Vernikovsky Valery A., Senyukov Sergey, Jakovlev Andrey, Jaxybulatov Kayrly Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 75 - 91. doi: 10.1016/j.jvolgeores.2012.10.014.    Аннотация
We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka, Russia. We consider the time period from 1999 to 2009, which covers several stages of activity of Kluchevskoy and Bezymianny volcanoes. The results are supported by synthetic tests that recover a common 3D model based on data corresponding to different time windows. Throughout the period, we observe a robust feature below 25 km depth with anomalously high Vp/Vs values (up to 2.2). We interpret this feature as a channel bringing deep mantle materials with high fluid and melt content to the bottom of the crust. This mantle channel directly or indirectly determines the activity of all volcanoes of the Kluchevskoy group. In the crust, we model complex structure that varies over time. During the pre-eruptive period, we detected two levels of potential magma storage: one in the middle crust at 10–12 km depth and one close to the surface just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymiyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no strong anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in the stress and deformation states, which cause fracturing and the active transport of fluids. These fluids drive more fracturing in a positive feedback system that ultimately leads to eruption. We envision the magma reservoirs beneath the Kluchevskoy group as sponge-structured volumes that may quickly change the content of the molten phases as fluids pulse rapidly through the system.
Koulakov Ivan, Jaxybulatov Kayrly, Shapiro Nikolay M., Abkadyrov Ilyas, Deev Evgeny, Jakovlev Andrey, Kuznetsov Pavel, Gordeev Evgeny, Chebrov Viktor Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding // Journal of Volcanology and Geothermal Research. 2014. V. 285. P. 36 - 46. doi: 10.1016/j.jvolgeores.2014.08.012.    Аннотация
Avacha group includes two active and potentially dangerous volcanoes, Avachinsky and Koryaksky, located close to Petropavlovsk-Kamchatsky, the main city of Kamchatka. We present the results of two independent seismic studies of shallow crustal structures beneath the Avacha group based on passive and active source observations. The first study is based on the analysis of continuous recording by 11 seismic stations installed over the Avacha group in 2012 and 7 permanent stations in the same region. We present a series of 2D Rayleigh-wave group velocity maps based on correlation of ambient noise, that were then converted into 3D distribution of shear wave velocity. The second work was based on the reprocessing of an active source deep seismic sounding profile across the Avachinsky volcano that was shot in 1982–1984. We made the analysis of travel times of refracted waves using a 2D tomography inversion. The resulting seismic models appear to be consistent with each other and show clear low-velocity zone to the SW of the Avachinsky volcano and high velocity structures to NE. These observations also agree with the existing gravity and magnetotelluric measurements. Based on the obtained seismic models we identify two large buried calderas and large lava flows that are thought to be related to a series of large eruption episodes of Avachinsky occurred within the last 30,000 years.
Kugaenko Yulia, Titkov Nikolay, Saltykov Vadim Constraints on unrest in the Tolbachik volcanic zone in Kamchatka prior the 2012–13 flank fissure eruption of Plosky Tolbachik volcano from local seismicity and GPS data // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 38 - 46. doi: 10.1016/j.jvolgeores.2015.05.020.    Аннотация
Abstract A new fissure eruption began on 27 November 2012 on the southern slope of Plosky Tolbachik volcano, which is located in central Kamchatka, Russia, and is part of the Klyuchevskoy volcano group. We analyzed the displacement of the earth surface and the seismicity during several months before the eruption onset. According to seismic and GPS data the eruption was preceded by about 4–5 months (July–November 2012) of synchronous crustal deformation and seismicity. The seismic anomaly comprises low energy level seismicity (mainly M = 1.2–2.3) under Plosky Tolbachik volcano at a depth of less than 5 km. In the 2–3 weeks immediately preceding the eruption the rate of seismicity and the amount of radiated seismic energy exceeded the long-term average values (2000–2011) by more than 40 times. The deformation anomaly was recorded by displacement of the GPS points at distances from 20 to 60 km to the north of Tolbachik. The principal axis of the compressive strain was approximately directed towards the Tolbachik eruption site. The permanent GPS network detected radial compression and tangential stretching. The compressive strain reached about 10− 7 prior to eruption onset. The comparable duration of seismic and deformation anomalies (~ 4–5 months before the eruption) is consistent with a common origin, connected to magma rising from depth, and is interpreted as indicating that they were medium-term precursors to the eruption. Data recorded during this unrest episode of the Tolbachik volcanic zone will contribute to understanding of the reawakening of volcanic activity in this region and others worldwide with similar characteristics.
Kuno H. Petrology of Alaid volcano, north Kurile // Japanese journal of geology and geography. 1935. V. 12. P. 153-162.
Kyle Philip R., Ponomareva Vera V., Rourke Schluep Rachelle Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia // International Geology Review. 2011. V. 53. № 9. P. 1059-1097. doi:10.1080/00206810903442162.    Аннотация
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall
deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological
events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize
individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three.
Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O,
CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative
bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical haracteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.
Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and
trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra
are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.
Ladygin V.М., Girina O.A., Frolova Yu.V. Petrophysical features of lava flows from Bezymyannyi volcano, Kamchatka // Journal of Volcanology and Seismology. 2012. V. 6. № 6. P. 341-351. doi: 10.1134/S074204631206005X.    Аннотация
This paper presents results from a study of lava flows that were discharged by Bezymyannyi Volcano at different times, from old (about 3500 years ago) to recent ones (1985–1989). We provide detailed descriptions of the composition, structure, and petrophysical properties for the main types of constituent rocks, which are andesites and basaltic andesites. It was found that porosity is the leading factor that controls rock properties, while the effects of structural and mineralogical features are less prominent. We demonstrate the variation in the properties of rocks that compose the lava flows in relation to their ages: the older a rock is, the higher its density and strength and the lower its porosity is.
Ladygin V.М., Girina O.A., Frolova Yu.V., Kondrashov I.A. The lava flows of Bezymianny volcano, Kamchatka // 4rd International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs, Petropavlovsk-Kamchatsky, August 21-27, 2004. Petropavlovsk-Kamchatsky: IVS FED RAS. 2004. P. 63-64.
Lundgren Paul, Kiryukhin Alexey, Milillo Pietro, Samsonov Sergey Dike model for the 2012–2013 Tolbachik eruption constrained by satellite radar interferometry observations // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 79 - 88. doi: 10.1016/j.jvolgeores.2015.05.011.    Аннотация
Abstract A large dike intrusion and fissure eruption lasting 9 months began on November 27, 2013, beneath the south flank of Tolbachik Volcano, Kamchatka, Russia. The eruption was the most recent at Tolbachik since the Great Tolbachik Eruption from 1975 to 1976. The 2012 eruption was preceded by more than 6 months of seismicity that clustered beneath the east flank of the volcano along a NW–SE trend. Seismicity increased dramatically before the eruption, with propagation of the seismicity from the central volcano conduit in the final hours. We use interferometric synthetic aperture radar (InSAR) to compute relative displacement images (interferograms) for {SAR} data pairs spanning the eruption. We use satellite {SAR} data from the Canadian Space Agency's RADARSAT-2 and from the Italian Space Agency's COSMO-SkyMed missions. Data are modeled first through a Markov Chain Monte Carlo solution for a single tensile dislocation (dike). We then use a boundary element method that includes topography to model a distributed dike-opening model. We find the best-fitting dike dips 80° to the {WNW} with maximum opening of 6–8 m, localized in the near surface and more broadly distributed in distinct regions up to 3 km beneath the surface, which varies from 1 to 2 km elevation for the eruptive fissures. The distribution of dike opening and its correspondence with co-diking seismicity suggests that the dike propagated radially from Tolbachik's central conduit.
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. V. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.    Аннотация
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.

На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
http://repo.kscnet.ru/270/ [связанный ресурс]
Maksimov A.P., Firstov P.P., Girina O.A., Malyshev A.I. The June 1986 eruption of Bezymyannyi // Volcanology and Seismology. 1992. V. 13. № 1. P. 1-20.    Аннотация
This paper presents the results of visual observations, particle-size analysis, seismological observations, and acoustic measurements carried out during a small-magnitude eruption of Bezymyannyi in June 1986. A mlodel is proposed for the mechanism of the eruption. A specific character of the eruption is explained by a deeper localization of a gas-rich aagia portion in the conduit,
http://repo.kscnet.ru/797/ [связанный ресурс]
Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Y.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka // Annaly of Glaciology . 2011. V. 52. № 58. P. 44-50. doi: 10.3189/172756411797252149.    Аннотация
The Sea of Okhotsk is the southernmost area in the Northern Hemisphere where seasonal sea ice is produced every year. The formation of sea ice drives thermohaline circulation in the Sea of Okhotsk, and this circulation supports the high productivity in the region. However, recent reports have indicated that sea-ice production in the Sea of Okhotsk is decreasing, raising concern that the decreased sea ice will affect not only circulation but also biological productivity in the sea. To reconstruct climatic changes in the Sea of Okhotsk region, we analyzed an ice core obtained from Ichinskaya Sopka (Mount Ichinsky), Kamchatka. We assumed that the remarkable negative peaks of δD in the ice core were caused by expansion of sea ice in the Sea of Okhotsk. Melt feature percentage (MFP), which indicates summer snowmelt, showed high values in the 1950–60s and the mid-1990s–2000s. The high MFP in the 1950–60s was assumed to be caused by an increase in cyclone activity reaching Kamchatka during a negative period of the Pacific Decadal Oscillation index, and that in the 1990–2000s may reflect the increase in solar irradiation during a positive period of the summer Arctic Oscillation index.
Maximov A.P. Physicochemical mechanism of the deep degassing of aqueous magmas // Experiment in Geosciences. 2001. V. 10. № 1. P. 122-123.
Melekestsev I.V. Ages and stages of development of the Kurile - Kamchatka active volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 230-231.
Melekestsev I.V. On probability of catastrophic explosive eruptions in the Kurile - Kamchatka volcanic area in future // Kagoshima International Conference on Volcanoes. Abstracts. Kagoshima: 1988. P. 382
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Basanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 2 (1926-1991) // Volcanology and Seismology. 1994. V. 16. № 2. P. 93-114.    Аннотация
Previous data are summarized and new evidence is presented on the Avacha eruptions of 1926-1927, 1938, and 1945. The last eruption of January 1991 is described. The dynamics of the Avacha eruptive activity is considered for a period of 1737-1991. The eruptions are classified into different types. The type and size of a future event are predicted and the related hazard is assessed. It is recommended that the southwestern and southern sectors of the Avacha surrounding should be declared forbidden for residential or industrial construction because of a high volcanic hazard. -Journal summary
http://repo.kscnet.ru/160/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Bazanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 1 (1737-1909) // Volcanology and Seismology. 1994. V. 15. № 6. P. 649-665.    Аннотация
Some of the previous views on the style of the Avacha eruptions during 1737-1909 are revised on the basis of new data obtained by the authors. The types of eruptions, their geological and geomorphological effects, and the related volcanic hazards are reassessed. All eruptions were explosive events, except for the 1894-1895 extrusive-explosive eruption. The eruptions of 1737, 1779, and 1827 are classified as large, the others, as mild or medium-size events. -from Journal summary
http://repo.kscnet.ru/55/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Ponomareva V.V., Sulerzhitskiy L.D. Holocene catastrophic caldera-forming eruptions of Ksudach volcano, Kamchatka // Volcanology and Seismology. 1996. V. 17. № 4-5. P. 395-422.    Аннотация
Four Plinian eruptions of Ksudach have been reconstructed and dated by the carbon-14 method. The eruptions produced three collapse calderas: the KS1 eruption formed Caldera V 1700-1800 years ago, the KS2 and KS3 events produced Caldera IV 6000-6100 years ago, and the KS4 eruption formed Caldera III 8700-8800 years ago. The most violent eruption was the KS1 event. The sizes of the calderas were 4 × 6.5 km (V), 5 × 6 km (IV), and presumably 2-3 km across (III). Juvenile material was erupted in a rhythmic manner. The composition of the products was dominated by andesite (KS2 and KS4), dacite and rhyodacite (KS3), and rhyodacite (KS1). It is assumed that all caldera-forming eruptions were triggered by the injection of a new portion of high-temperature basic magma and its mixing with the cooling acid magma of the preexisting source. -from Journal summary

Реконструированы и датированы 14С-методом четыре плинианских извержения вулкана Ксудач, сформировавших три кальдеры обрушения: KCi и кальдеру V - 1700-1800 л. н.; КС2 + КС3 и кальдеру IV - 6000-6100 л. н.; КС4 и кальдеру III 8700-8800 л. н. Самым мощным было извержение KCi: 18-19 км3 пирокластики, высота эруптивной колонны до 23 км. Объем продуктов извержений КС2 + КС3 - 10-11 км3, КС4 - не менее 1,5-1,7 км3. Размеры кальдер: V - 4 X 6,5 км, IV - 5x6 км, поперечь III - предположительно 2-3 км. Вынос ювенильной пирокластики в ходе извержений было ритмичным. Каждый ритм начинался выбросом тефры, а завершался формированием пирокластических потоков. Состав продуктов варьировал от андезитов до риодацитов: КС2 и КС4 - преимущественно андезиты, КС3 - дациты и риодациты, KCi - риодацит. Предполагается, что "спусковой механизм" для начала всех кальдерообразующих извержений - внедрение свежей сильно нагретой магмы основного состава и смешение ее с остывающей кислой магмой существовавшего ранее очага. В соответствии со своими масштабами извержения должны были оказать влияние на климат и озоновый слой 3емли и найти отражение в виде кислотных пиков в Гренландском ледниковом щите.
http://repo.kscnet.ru/903/ [связанный ресурс]
Melekestsev I.V., Braitseva O.A., Sulerzhitskii L.D., Ogorodov N.V., Kozhemiaka N.N., Egorova I.A., Lupikina E.G. Age of Volcanoes in the Kurille-Kamchatka Zone // International Association of Volcanology and Chemistry of the Earth`s Interior. Sumposium on Volcanoes &Their Roots. Oxford: 1969. P. 138-139.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru