Group by:  
Jump to:     All     A     B     C     D     E     F     G     H     I     J     K     L     M     N     O     P     R     S     T     V     W     Y     Z     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Я     
Records: 2603
Girina O.A., Lupian E.A., Sorokin A.A., Melnikov D.V., Manevich A.G. Operative remote sensing monitoring of Kamchatkan volcanoes using the information system VolSatView // 7th International Workshop on Volcanic Ash (IWVA/7), 19-23 October 2015. IWVA/7. 2015. P. 1-26.
There are 30 active volcanoes in the Kamchatka, and several of them are continuously active. In 2014-2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) had strong and moderate explosive eruptions.
Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines.
Annual Kamchatkan strong explosive eruptions with ash emissions by 8-15 km above sea level represent a real threat to modern jet aviation. To reduce the risk of aircraft encounters with volcanic ash clouds in the North Pacific region, since 2002, KVERT IVS FEB RAS conduct a daily satellite monitoring of 30 Kamchatkan volcanoes and visual and video monitoring of Klyuchevskoy, Sheveluch, Bezymianny, Koryaksky, Avachinsky, Mutnovsky and Gorely volcanoes. KVERT analyses seismic data for 9 volcanoes (Klyuchevskoy, Sheveluch, Bezymianny, Tolbachik, Kizimen, Karymsky, Koryaksky, Avachinsky and Gorely) from the Kamchatkan Branch of Geophysical Survey RAS.
KVERT send Volcano Observatory Notice for Aviation (VONA) by email to Airport Meteorological Center (AMC) at Yelizovo Airport; and the Tokyo Volcanic Ash Advisory Centers (VAAC), the Anchorage VAAC, the Washington VAAC, the Montreal VAAC, and the Darwin VAAC; aviation services, and scientists located throughout the North Pacific region. VONA/KVERT Releases are posted on the web site:
Since 2011, experts from IVS FEB RAS, Space Research Institute RAS, Computing Center FEB RAS and the Far Eastern Planeta Research Center have operated the information system “Monitoring of Volcanoes Activity in Kamchatka and the Kuriles” (VolSatView; that uses all available satellite data (operative and long-term archive data), weather and on-ground observations, the results of computational modeling of ash clouds and plumes trajectories to ensure continues monitoring and study of volcanic activity in Kamchatka and the Kuriles.
Girina O.A., Malkovsky S.I., Sorokin A.A., Loupian E.A., Korolev S.P. Numerical Modeling of the Ash Cloud Movement from the Catastrophic Eruption of the Sheveluch Volcano in November 1964 // Remote Sensing. 2022. Вып. 14. № 3449.
This paper reconstructs, for the first time, the motion dynamics of an eruptive cloud formed during the catastrophic eruption of the Sheveluch volcano in November 1964 (Volcanic Explosivity Index 4+). This became possible due to the public availability of atmospheric reanalysis data from the ERA-40 archive of the European Center for Medium-Range Weather Forecasts (ECMWF) and the development of numerical modeling of volcanic ash cloud propagation. The simulation of the eruptive cloud motion process, which was carried out using the FALL3D and PUFF models, made it possible to clarify the sequence of events of this eruption (destruction of extrusive domes in the crater and the formation of an eruptive column and pyroclastic flows), which lasted only 1 h 12 min. During the eruption, the ash cloud consisted of two parts: the main eruptive cloud that rose up to 15,000 m above sea level (a.s.l.), and the co-ignimbrite cloud that formed above the moving pyroclastic flows. The ashfall in Ust-Kamchatsk (Kamchatka) first occurred out of the eruptive cloud moving at a higher speed, then out of the co-ignimbrite cloud. In Nikolskoye (Bering Island, Commander Islands), ash fell only out of the co-ignimbrite cloud. Under the turbulent diffusion, the forefront of the main eruptive cloud rose slowly in the atmosphere and reached 16,500 m a.s.l. by 04:07 UTC on November 12. Three days after the eruption began, the eruptive cloud stretched for 3000 km over the territories of the countries of Russia, Canada, the USA, Mexico, and over both the Bering Sea and the Pacific Ocean. It is assumed that the well-known long-term decrease in the solar radiation intensity in the northern latitudes from 1963–1966, which was established according to the world remote sensing data, was associated with the spread of aerosol clouds formed not only by the Agung volcano, but those formed during the 1964 Sheveluch volcano catastrophic eruption
Girina O.A., Manevich A.G., Malik N.A., Melnikov D.V., Ushakov S.V., Demyanchuk Yu.V., Kotenko L.V. Active volcanoes of Kamchatka and Northern Kurils in 2005 // Journal of Volcanology and Seismology. 2007. Vol. 1. № 4. P. 237-247.
In 2005, six major eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoy, Shiveluch, and Karymskii) occurred and the Avachinskii, Mutnovskii, and Gorelyi Kamchatka volcanoes and the Ebeko and Chikurachki volcanoes in northern Kurils were in a state of increased activity. Owing to a close collaboration between the KVERT project, Elizovo airport meteorological center, and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo, Anchorage, and Washington VAACs), all necessary measures for safe airplane flights near Kamchatka were taken and fatal accidents related to volcanic activity did not occur.
Girina O.A., Manevich A.G., Melnikov D.V., Demyanchuk Yu.V., Nuzhdaev A.A., Petrova E. Kamchatkan Volcanoes Explosive Eruptions in 2014 and Danger to Aviation // Geophysical Research Abstracts. EGU2015-3174. // EGU2015-3174, Vienna, Austria, 2015. Vienna, Austria: EGU General Assembly 2015. 2015. Vol. 17.
Girina O.A., Manevich A.G., Melnikov D.V., Demyanchuk Yu.V., Petrova E. Explosive Eruptions of Kamchatkan Volcanoes in 2013 and Danger to Aviation // EGU2014. Abstracts. Vienna, Austria: 2014. P. 1468
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V. Activity of Kamchatkan Volcanoes in 2012-2013 and Danger to Aviation // Abstracts. International Workshop “JKASP-8”. Sapporo. Japan. September 22-26. 2014. 2014.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation // EGU General Assembly 2013. Geophysical Research Abstracts. Vienna, Austria: 2013. Vol. V15. № 6760-1.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 // Abstracts. Japan Geoscience Union Meeting. Yokohama, Japan: JpGU. 2014. № 00275.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Petrova E. Kamchatka and North Kurile Volcano Explosive Eruptions in 2016 and Danger to Aviation // JpGU-AGU Joint Meeting 2017 Abstracts. Chiba, Japan: Japan Geoscience Union. 2017.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Petrova E.G. The 2016 Eruptions in Kamchatka and on the North Kuril Islands: The Hazard to Aviation // Journal of Volcanology and Seismology. 2019. Vol. 13. № 3. P. 157-171.
Large explosive eruptions of volcanoes pose the highest hazard to modern jet f lights, because such eruptions can eject as much as several cubic kilometers of volcanic ash and aerosol into the atmosphere during a few hours or days. The year 2016 saw eruptions on 5 of the 30 active Kamchatka volcanoes (Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Zhupanovsky) and on 3 of the 6 active volcanoes that exist on the North Kuril Islands (Alaid, Ebeko, and Chikurachki). Effusive activity was observed on Sheveluch, Klyuchevskoy, Bezymianny, and Alaid. All volcanoes showed explosive activity. The large explosive events mostly occurred from September through December (Sheveluch), a moderate ash emission accompanied the entire Klyuchevskoy eruption in March–November, and explosive activity of Karymsky, Zhupanovsky, Alaid, and Chikurachki was mostly observed in the earlie r half of the year. The ash ejected in 2016 covered a total area of 600 000 km2, with 460 000 km2 of this being due to Kamchatka volcanoes and 140 000 km2 to the eruptions of the North Kuril volcanoes. The activity of Sheveluch, Klyuchevskoy, and Zhupanovsky was dangerous to international and local f lights, because the explosions sent ash to heights of 10–12 km above sea level, while the eruptions of Bezymianny, Karymsky, Alaid, Ebeko, and Chikurachki were dangerous for local flights, since the ash did not rise higher than 5 km above sea level.