Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 51
Страницы:  1 2 3 4 5 6
 P
Posteruption chemical evolution of a volcanic caldera lake: Karymsky Lake, Kamchatka (2013)
Taran Yuri, Inguaggiato Salvatore, Cardellini Carlo, Karpov Gennady Posteruption chemical evolution of a volcanic caldera lake: Karymsky Lake, Kamchatka // Geophysical Research Letters. 2013. Vol. 40. № 19. P. 5142-5146. doi:10.1002/grl.50961.
   Аннотация
The 1996 short-lived subaqueous eruption at the Karymsky caldera lake suddenly changed the composition of the lake water. The lake, with a surface area of ∼10 km^2 and a volume of ∼0.5 km^3, became acidic, increased its salinity to ∼1000 mg/kg, and became dominated by SO4^2- and Ca^2+. Since the eruption, the lake chemistry has evolved in a predictable manner described by simple box model. As a result of dilution by incoming SO4-Ca-Mg-poor water, SO4, Ca, and Mg concentrations follow a simple exponential decrease with a characteristic time close to the residence time of the lake. Na, K, and Cl decrease relatively significantly slower, indicating a continuing input of these constituents into the lake that was initiated during the eruption. Thus, the dynamics of two groups of lake water solutes can be predicted by a simple box model for water and solute mass balance. Key Points Karymsky lake suddenly changed chemistry as a result of the 1996 eruption One-box dynamic model correctly describes the evolution of the lake chemistry The calculated fluxes of chemicals are in a good agreement with the field data
Posteruptive Hematite Mineralization (1983)
Naboko S.I., Glavatskikh S.F. Posteruptive Hematite Mineralization // Volcanology and Seismology. 1983. № 1. P. 83-96.
Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR (2013)
Ji Lingyun, Lu Zhong, Dzurisin Daniel, Senyukov Sergey Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR // Journal of Volcanology and Geothermal Research. 2013. Vol. 256. P. 87 - 95. doi: 10.1016/j.jvolgeores.2013.02.011.
   Аннотация
Abstract Interferometric synthetic aperture radar (InSAR) images reveal a pre-eruption deformation signal at Kizimen volcano, Kamchatka, Russia, where an ongoing eruption began in mid-November, 2010. The previous eruption of this basaltic andesite-to-dacite stratovolcano occurred in 1927–1928. InSAR images from both ascending and descending orbital passes of Envisat and ALOS PALSAR satellites show as much as 6 cm of line-of-sight shortening from September 2008 to September 2010 in a broad area centered at Kizimen. About 20 cm of opening of a nearly vertical dike provides an adequate fit to the surface deformation pattern. The model dike is approximately 14 km long, 10 km high, centered 13 km beneath Kizimen, and strikes NE–SW. Time-series analysis of multi-temporal interferograms indicates that (1) intrusion started sometime between late 2008 and July 2009, (2) continued at a nearly constant rate, and (3) resulted in a volume expansion of 3.2 × 107 m3 by September 2010, i.e., about two months before the onset of the 2010 eruption. Earthquakes located above the tip of the dike accompanied the intrusion. Eventually, magma pressure in the dike exceeded the confining strength of the host rock, triggering the 2010 eruption. Our results provide insight into the intrusion process that preceded an explosive eruption at a Pacific Rim stratovolcano following nearly a century of quiescence, and therefore have implications for monitoring and hazards assessment at similar volcanoes elsewhere.
Precursors of Kamchatkan volcanoes eruptions (2015)
Girina O.A. Precursors of Kamchatkan volcanoes eruptions // 26th IUGG General Assembly. June 22-July 02, 2015. Abstracts. Prague: IUGG/IAVCEI. 2015. P. VS10p-451.
Prediction of the Klyuchevskoi Parasitic Eruption in March 1983 (1983)
Tokarev P.I. Prediction of the Klyuchevskoi Parasitic Eruption in March 1983 // Volcanology and Seismology. 1983. № 5. P. 491-496.
Prediction of volcanic eruptions and seismic methods of location of magma chambers — A review (1971)
Gorshkov G.S. Prediction of volcanic eruptions and seismic methods of location of magma chambers — A review // Bulletin Volcanologique. 1971. Vol. 35. Vol. 1. P. 198-211. 14 p. doi:10.1007/BF02596817.
Prehistoric and 1933 debris avalanches and associated eruptions of Harimkotan Volcano (Kurile Islands) (1995)
Belousova Marina, Belousov Alexander Prehistoric and 1933 debris avalanches and associated eruptions of Harimkotan Volcano (Kurile Islands) // Periodico di Mineralogia. 1995. № LXIV. P. 99-101.
Problems of the Stoichiometry and Thermobarometry of Magmatic Amphiboles: An Example of Hornblende from the Andesites of Bezymyannyi Volcano, Eastern Kamchatka (2002)
Almeev R.R., Ariskin A.A., Ozerov A.Yu., Kononkova N.N. Problems of the Stoichiometry and Thermobarometry of Magmatic Amphiboles: An Example of Hornblende from the Andesites of Bezymyannyi Volcano, Eastern Kamchatka // Geochemistry International. 2002. Vol. 40. № 8. P. 723-738.
Problems of using volcanic thermae of the Kurile-Kamchatka Island arc for Power (1960)
Averiev V.V., Ivanov V.V., Piip B.I. Problems of using volcanic thermae of the Kurile-Kamchatka Island arc for Power // Bulletin Volcanologique. 1960. Vol. 23. Vol. 1. P. 257-263. doi: 10.1007/BF02596653.
Production of phreatic explosions in the interaction of lava and ice (1990)
Vinogradov V.N., Muravyev Y.D., Nikitina I.M., Salamatin A.N. Production of phreatic explosions in the interaction of lava and ice // Volcanology and Seismology. 1990. Vol. 9. № 1. P. 89-98.
   Аннотация
A matematical model is given of the formation of phreatic explosions in lava flows coming into contact with ice formations. Quantitative characteristics are derived for the various stages in the development of the explosion; by means of wich its strength and other parameters may be evaluated. The theoretical calculation results are in agreement with empirical data.