Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2515
Articles
Belousov Alexander, Belousova Marina, Khin Zaw, Streck M., Bindeman Ilya, Meffre S., Vasconcelos P. Holocene eruptions of Mt. Popa, Myanmar: Volcanological evidence of the ongoing subduction of Indian Plate along Arakan Trench // Journal of Volcanology and Geothermal Research. 2018. № 360. P. 126-138. doi: 10.1016/j.jvolgeores.2018.06.010.
Belousov Alexander, Belousova Marina, Krimer D., Costa F., Prambada O., Zaennudin A. Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when // Journal of Volcanology and Geothermal Research. 2015. Vol. 301. P. 238-252.
Belousov Alexander, Belousova Marina, Voight Barry Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia // Bulletin of Volcanology. 1999. Vol. 61. № 5. P. 324-342. doi:10.1007/s004450050300.
Belousov Alexander, Voight Barry, Belousova Marina Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits // Bulletin of Volcanology. 2007. Vol. 69. № 7. P. 701-740. doi:10.1007/s00445-006-0109-y.
Belousov Alexander, Voight Barry, Belousova Marina, Petukhin Anatoly Pyroclastic surges and flows from the 8-10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia // Bulletin of Volcanology. 2002. Vol. 64. № 7. P. 455-471. doi:10.1007/s00445-002-0222-5.
Belousov Alexander, Walter Thomas R., Troll Valentin R. Large-scale failures on domes and stratocones situated on caldera ring faults: sand-box modeling of natural examples from Kamchatka, Russia // Bulletin of Volcanology. 2005. Vol. 67. № 5. P. 457-468. doi:10.1007/s00445-004-0387-1.
Belousov Vladimir, Belousova Irina, Khubaeva Olga Long-lived Volcanic Centers of Kamchatka Geothermal Areas // World Geothermal Congress 2020+1. Reykjavik, Iceland: 2020. С. 1-8.    Annotation
The current problems of hydrothermal processes and ore-forming systems are volcanic heat sources and mechanisms of heat
transfer. In Pauzhetsky, Semyachik and Mutnovsky geothermal areas in Kamchatka, active long-lived volcanic centers have been
studied, with which high-temperature hydrothermal systems are associated. In the Banno-Paratunsky geothermal area the Paleogene
and Neogene long-lived volcanic centers were identified, with which low-temperature hydrothermal systems are associated. The
geological history of the long-lived volcanic centers development is characterized by changes in their structure as a result of
hydrothermal-magmatic activity. These changes are manifested in the generation and evolution of magma chambers in the mantle
and in the Earth’s crust. Basalt melts of the mantle chambers transport the deep heat to the Earth’s surface through plane magmatic
channels without significant losses. The heat flow of these volcanic centers is short-lived and is characterized by a significant
capacity of ~8,000 kcal/km2s. The long-lived volcanic centers are characterized by the presence of magma chambers in the Earth's
crust. They shield the part of the mantle heat flow. Their thermal capacity on the Earth's surface is estimated from 1000 kcal/km2s
to 5000 kcal/km2s. It is assumed that a significant amount of thermal energy is retained in the long-lived volcanic centers. It is
spent on formation and activity of the chambers as well as the convective hydrothermal ore-forming systems. The evolution of such
centers is accompanied by the formation of complexes of metamorphic rocks which interaction with high-temperature mantle melts
is accompanied by redox reactions like combustion. As a result of these reactions, thermal energy is produced in such magma
chambers. A long-lived jet magmatic system is formed, and it provides the transfer of mantle heat. Heat transfer in the system is
accompanied by minimization of heat losses, accumulation of heat and its additional generation which is necessary for the heat
transfer in the structures with low thermal conductivity. The formation, evolution and extinction of magma chambers and reservoirs
in such heat-conducting structures are controlled by the thermophysical properties of the rocks, their geological structure and redox processes in them.
Belousova Marina, Belousov Alexander Prehistoric and 1933 debris avalanches and associated eruptions of Harimkotan Volcano (Kurile Islands) // Periodico di Mineralogia. 1995. № LXIV. P. 99-101.
Bergal-Kuvikas Olga, Bindeman Ilya, Chugaev Andrey, Larionova Yulia, Perepelov Alexander, Khubaeva Olga Pleistocene-Holocene Monogenetic Volcanism at the Malko-Petropavlovsk Zone of Transverse Dislocations on Kamchatka: Geochemical Features and Genesis // Pure and Applied Geophysics. 2022. doi: 10.1007/s00024-022-02956-7.
Bergal-Kuvikas Olga, Bindeman Ilya, Skorkina Anna, Khubaeva Olga Origin of monogenetic volcanoes in Malko-Petropavlovsk zone of the transverse dislocation (Kamchatka): geological setting, geophysical parameters and geochemical data // Abstract volume of the 8th International Maar Conference. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2020. P. 37-38.