Main BibliographyПо типу публикаций

Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2093
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Katov D.M., Puriga A.I. The Elbrus caldera in the northern Caucasus // Doklady Earth Sciences. 1998. V. 363 A. № 9. P. 1202-1204.
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Sulerzhitskii L.D., Katov D.M., Puriga A.I. Radiocarbon dating of holocene eruptions of the Elbrus Volcano in the northern Caucasus, Russia // Doklady Earth Sciences. 1998. V. 363. № 8. P. 1093-1095.
Bogoyavlenskaya G.E., Braitseva O.A., Melekestsev I.V., Kirianov V.Yu., Dan Miller C. Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes // Journal of Geodynamics. 1985. V. 3. № 3-4. P. 189-218. doi:10.1016/0264-3707(85)90035-3.    Annotation
This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955–1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (10^17−10^18 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less.
The heat energy of all three eruptions is comparable: 1.3 × 10^18, 3.8−4.8 × 10^18 and 1 × 10^17 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively.
Bogoyavlenskaya G.E., Girina O.A. Bezymianny volcano: 50 years of activity // Abstracts. 5rd Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP-5). 2006. P. 129 doi: P 601.
Bogoyavlenskaya G.E., Girina O.A. Discriminations in Generation of pyroclastic deposit types from andesitic volcanoes of Kamchatka (in the Bezymianny volcano case) // IUGG. XXI General Assembly. Colorado. 1995. P. B 410
Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A. Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits // SEAN Bulletin. 1986. № 4. P. 15-20.
Bogoyavlenskaya G.E., Naumov V.B., Tolstykh M.L., Ozerov A.Yu., Khubunaya S.A. Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) // Abstracts of IAVCEI General Assembly, 18-22 July 2000. Bali, Indonesia. 2000. P. 87
Botcharnikov Roman E., Shmulovich Kirill I., Tkachenko Sergey I., Korzhinsky Mikhail A., Rybin Alexander V. Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles // Journal of Volcanology and Geothermal Research. 2003. V. 124. № 1-2. P. 45-66. doi:10.1016/S0377-0273(03)00043-X.    Annotation
The temperature and hydrogen isotope composition of the fumarolic gases have been studied at Kudriavy volcano, Kurile Islands, which is unique for investigating the processes of magma degassing because of the occurrence of numerous easily accessible fumaroles with a temperature range of 100–940°C. There are several local fumarolic fields with a total surface area of about 2600 m2 within the flattened crater of 200×600 m. Each fumarolic field is characterized by the occurrence of high- and low-temperature fumaroles with high gas discharges and steaming areas with lower temperatures. We have studied the thermal budget of the Kudriavy fumarolic system on the basis of the quantitative dependences of the hydrogen isotope ratio (D/H) and tritium concentration on the temperature of fumarolic gases and compared them with the calculated heat balance of mixing between hot magmatic gas and cold meteoric water. Hydrogen isotope composition (δD and 3H) shows a well expressed correlation with the gas temperature. Since D/H ratio and 3H are good indicators of water sources in volcanic areas, it suggests that the thermal budget of the fumarolic system is mostly controlled by the admixing of meteoric waters to magmatic gases. The convective mechanism of heat transfer in the hydrothermal system governs the maximum temperatures of local fumaroles and fumarolic fields. Low-temperature fumaroles at Kudriavy are thermally buffered by the boiling processes of meteoric waters in the mixing zone at pressures of 3–12 bar. These values may correspond to the hydrostatic pressure of water columns about 30–120 m in height in the volcanic edifice and hence to the depth of a mixing/boiling zone. Conductive heat transfer is governed by conductive heat exchange between gases and country rocks and appears to be responsible for the temperature distribution around a local fumarolic vent. The temperature and pressure of shallow degassing magma are estimated to be 1050°C and 2–3 bar, respectively. The length of the ‘main’ fumarolic gas conduit is estimated to be about 80 m from the linear correlation between maximal temperatures of fumarolic fields and distances to the highest-temperature ‘F-940’ fumarole. This value may correspond to the depth of an apical part of the magmatic chamber. The geometry of the crater zone at the Kudriavy summit and the model of convective gas cooling suggest different hydrostatic pressures in the hydrothermal system at the base of high- and low-temperature gas conduits. The depths of gas sources for low-temperature fumaroles are evaluated to be about 200 m at the periphery of the magma chamber.
Braitseva O.A., Bazanova L.I., Melekestsev I.V., Sulerzhitskiy L.D. Large holocene eruptions of Avacha Volcano, Kamchatka (7250-3700 14C years B.P.) // Volcanology and Seismology. 1998. V. 20. № 1. P. 1-27.    Annotation
The chronology, dynamics, and parameters of seven large eruptions of Avacha Volcano were reconstructed for its IAv andesitic period 7250-370014C years B.P., which began after a >2000-year period of relative quiescence. Their juvenile (andesitic pyroclastics) and resurgent products are described, and the geological and geomorphological consequences are evaluated. The largest eruption occurred 715014C years B.P. (8-10 km3 of erupted material). The subsequent events occurred 5700 (≥0.34 km3), 5600 (≥0.4 km3), 5500 (>1.34 km3), 5000 (≥0.5 km3), 4500 (>1.1 km3), and 4000 (≥0.6 km3) 14C years B.P. The erupted rocks were dominated by tephra; pyroclastic flows occurred only during the events of 5500 and 5000 years ago. It is believed that most of the eruptions produced acid peaks of varying intensity in the Greenland ice sheet.

Реконструированы хронология, динамика и параметры семи крупнейших извержений андезитового этапа 1Ав 7250-3700 14С-лет назад (л.н.) вулкана Авачинский на Камчатке, начавшегося после >2000-летнего периода относительного покоя. Описаны их ювенильные (андезитовая пирокластика) и резургентные продукты, оценен геолого-геоморфологический эффект. Самое мощное извержение (объем продуктов 8-10 км3) было 7250, последующие - 5700 (3*0,34 км3), 5600 (3*0,4 км3), 5500 (1,34 км3), 5000 (0,5 км3), 4500 (>1,1 км3), 4000 ( 0,6 км3) 14С-л.н. Среди изверженных продуктов преобладала тефра, пирокластические потоки имели место лишь при извержениях 5500 и 5000 л.н. Предполагается, что большинство извержений могло давать кислотные пики разной интенсивности в Гренландском ледниковом щите.
Braitseva O.A., Melekestsev I.V. Eruptive history of Karymsky volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating // Bulletin of Volcanology. 1991. V. 53. № 3. P. 195-206. doi:10.1007/BF00301230.    Annotation
Eruptions of the active Karymsky stratovolcano began about 5300 (6100 C-14) B.P. from within a pre-existing caldera which formed 7700 C-14 B.P. As indicated by 32 C-14 determinations on buried soils and charcoal, the volcano has gone through two major cycles of activity, separated by a 2300 year period of repose. The first cycle can be divided into two stages (6100-5100 and 4300-2800 B.P.). The earlier stage began with especially intense eruptions of basaltic andesite to dacite. The later stage was characterized by moderate-strength eruptions of andesite. The second cycle, which is characterized by weak to moderate intermittent eruptions of andesite, started 500 B.P. and continues to the present. Eruptive patterns suggest that this cycle may continue for at least another 200 years with an eruptive character similar to that of the recent past.


Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.