Bibliography
Volcano:
Group by:  
Jump to:     All     Articles     Books     Books sections     Dissertations     Conference Items     Documents     Copyright certificates     Weblinks     Other     
Records: 2610
Articles
West Michael E. Recent eruptions at Bezymianny volcano — a seismological comparison // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 42 - 57. doi: 10.1016/j.jvolgeores.2012.12.015.
   Annotation
Abstract For the past few decades, Bezymianny volcano has erupted once to twice per year. Here, I examine eight eruptive events between 2006 and 2010. This is the first time period for which proximal or broadband seismic data have been recorded at Bezymianny. Several recurring patterns are demonstrated in advance of eruptions. Eruptions are generally preceded by 12–36 h of tremor energy elevated by 2 to 3 orders of magnitude. Locatable earthquake activity is quite erratic in the days before eruptions. For eruptions of juvenile magma, however, the cumulative moment magnitude increases with the repose time since the previous eruption. Though tenuous, this relationship is statistically significant and could improve forecasts of Bezymianny eruptions. The most energetic eruptions demonstrate increasing multiplet activity in the run-up, followed by a rapid cessation at the time of eruption. When present, this behavior marks increasing pressure in the conduit system as degassing eclipses the capacity for venting. Very long period seismicity (> 20 s periods) accompanies some eruptions. These tend to be the same short-lived high-energy eruptions that exhibit multiplet precursors. Four eruptions are examined in detail to illustrate the variety in eruption mechanisms. Lava dome collapses, sustained eruptions, singular paroxysmal explosions and post-explosion lava flows occur in different combinations demonstrating that more than one eruption trigger is regulating Bezymianny. Compared to Bezymianny's fifty-year modern history, recent eruptions have been shorter-lived and separated by longer repose times. Some evidence suggests that these eruptions may be increasingly explosive—a speculation that carries significant hazard implications. If true, however, this threat is tempered by solid evidence that the most explosive eruptions are preceded by the clearest precursors, suggesting an ability to improve the already excellent eruption forecasts available for Bezymianny.
Yasui M., Hashimoto Y., Ueda S. Geomagnetic and Bathymetric Study of the Okhotsk Sea - (1) // Oceanographical Magazine. 1967. Vol. 19. № 1. P. 73-85.
Zaretskaya N.E., Ponomareva V.V., Sulerzhitsky L.D. Radiocarbon dating of large Holocene volcanic events within South Kamchatka (Russian Far East) // Radiocarbon. 2007. Vol. 49. № 2. P. 1065-1078.
   Annotation
Radiocarbon dating is widely used when studying recent volcanic activity in the Kamchatka Peninsula due to the abundance of organic matter that is associated with the volcanic deposits. Here, we present the results of 14C dating of major volcanic events within the active South Kamchatka volcanic zone. South Kamchatka includes 8 recently active volcanic centers (stratovolcanoes, calderas, and large craters) that have been erupting during the Holocene. Their tephras represent useful markers for both the southern part of the peninsula and the Northern Kurile Islands. Since these marker tephra layers facilitate stratigraphic and tephrochronological studies in this area, it was important to determine their ages. We have obtained 73 new individual 14C dates on paleosol, peat, charcoal, and wood associated with the marker tephra layers, then complemented these data with 37 earlier published dates and analyzed the resulting data set. We selected the reliable dates and then obtained average 14C ages of marker tephra layers. The details of these procedures, as well as brief descriptions of South Kamchatka Holocene eruptions and their tephra beds, are presented in the paper.
Zelenski M., Malik N., Taran Yu. Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution // Journal of Volcanology and Geothermal Research. 2014. Vol. 285. P. 136 - 149. doi: 10.1016/j.jvolgeores.2014.08.007.
   Annotation
Abstract Gases and aerosols from the 2012–13 effusive eruption of Tolbachik basaltic volcano, Kamchatka, were sampled in February and May, 2013, from a lava tube window located 300 m from the eruptive crater; temperature at the sampling point was 1060–1070 °C. The chemical and isotopic compositions of the sampled gases (92.4 H2O, 3.5 CO2, 2.3 SO2 on average; δD from − 25.0 to − 38.6‰) correspond to a typical volcanic arc gas without dilution by meteoric or hydrothermal water. Halogen contents in the gases (1.37 HCl, 0.5 HF) were higher than average arc values. The total amount of analyzed metallic and metalloid (trace) elements in the gas exceeded 665 ppm. Six most abundant trace elements, K (250 ppm), Na (220 ppm), Si (74 ppm), Br (48 ppm), Cu (21 ppm) and Fe (12 ppm), accounted for 95 of the total content of trace elements in the gas. The gases contained 24 ppb Re, 12 ppb Ag, 4.9 ppb Au and 0.45 ppb Pt. Refractory rock-forming elements (Mg, Al, Ca) and some other elements such as Ba and Th were transported mainly in the form of silicate microspheres and altered rock particles. The concentrations of metals in the eruptive Tolbachik gases are higher than the corresponding concentrations in high-temperature fumaroles worldwide, although the mutual ratios of the elements are approximately the same. The gas/magma partition coefficients of eleven elements exceed unity, including the non-metals F, S, Cl, Br, As, Se and Te and the rare metals Cd, Re, Tl and Bi. Despite the relatively low concentrations of trace elements in the volcanic gases at the highest temperatures, superficial magma degassing provides information on the sources and sinks of metals.
Zelenski M., Simakin A., Taran Yu., Kamenetsky V.S., Malik N.A. Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry // Geochimica et Cosmochimica Acta. 2021. Vol. 295. P. 112-134. https://doi.org/10.1016/j.gca.2020.12.011.
   Annotation
By comparing high-quality volcanic gas and whole rock compositions, we calculated the apparent (observed) mass partition coefficients Kd* for 58 elements on six basaltic volcanoes located in arc and rift/hotspot settings. The inferred Kd* vary from � 1100 for sulfur to 0.0001 for zirconium, i.e., within seven orders of magnitude. Only 14 elements have Kd* > 1, including highly volatile S, Se, Te and halogens, as well as Tl, Re, Os, Bi, Cd, Au, In and As. Alkali metals have Kd* in the rangefrom 0.1 for Cs to 0.01 for Na. Partition coefficients of other rock-forming elements are <0.001. The partition coefficients for elements depend on element speciation and concentrations of ligand-forming elements in the gas such as sulfur and chlorine.
Elements transported in the gas predominantly as halides have higher partition coefficients in HCl-rich arc gases, whereas elements preferably forming sulfides, hydrides and free atoms, have higher Kd* in sulfur-rich, HCl-poor and reduced rift/hot-spot gases. Degassing directly from the free melt surface is negligible; deep gas passing through the erupting vent is quickly overwhelmed by the signal of low-pressure degassing. Equilibration of rising bubbles with the surrounding melt almost eliminates the difference between Kd* calculated for degassing lava flows (no connection with deep magma) and for lava lakes and open-vent volcanoes (convective mass exchange with deep magma takes place). Diffusion does not strongly affect the apparent partitioning of magmas degassing at surface. Gas bubbles growing in near-surface silicate melts at atmospheric pressure have a large density difference compared to the surrounding melt of 12–15 thousand times. This leads to the rapid expansion of such bubbles and a decrease in the thickness of the diffusion boundary layer in the melt due to its stretching around the growing bubble, which sharply decreases diffusion fractionation. As a result, the apparent partition coefficients (Kd*) for degassing basaltic volcanoes are close to the equilibrium ones (Kd) for most of the elements. The partition coefficients of volatile elements (S and Cl) calculated from the comparison of volcanic gas and rock compositions are in agreement with the values determined previously via experiments or theoretical modeling.
Zharinov N.A., Fedotov S.A., Gorelchik V.I. A Model for Klyuchevskoy Volcano Activity from Geodelical and Seismological Data // Kagoshima International Conference on Volcanoes: Proceedings of the International Conference on Volcanoes, Japan, Kagoshima, 19-23 July 1988. Kagoshima: Kagoshima Prefectural Government. 1988. P. 71-74.
Zharinov N.A., Gorelchik V.I., Belousov A.B., Belousova M.G., Garbuzova V.T., Demyanchuk Yu.V., Zhdanova E.Yu. Volcanic eruptions and seismic activity at Klyuchevskoi, Bezymiannyi and Shiveluch in 1986-1987 // Volcanology and Seismology. 1991. Vol. 12. Vol. 3. P. 327-345.
Zharinov N.A., Gorelchik V.I., Zhdanova E.Yu., Andreev V.N., Belousov A.B., Belousova M.G., Gavrilenko V.A., Garbuzova V.T., Demyanchuk Yu.V., Khanzutin V.P. The Eruptions of the Northern Group of Volcanoes on Kamchatka in 1988-1989: Seismological and Geodesic Data // Volcanology and Seismology. 1993. Vol. 13. Vol. 6. P. 649-681.
Zharinov N.A., Zhdanova E.Yu., Belousov A.B., Belousova M.G., Ivanov A.P., Malyshev A.I., Khanzutin V.P. Activity of North Kamchatkan volcanoes in 1985 // Volcanology and Seismology. 1990. Vol. 10. Vol. 3. P. 331-346.
Zubin M.I., Melekestsev I.V., Tarakanovsky A.A., Erlich E.N. Quaternary Calderas of Kamchatka // International Association of Volcanology and Chemistry of the Earth`s Interior. Sumposium on Volcanoes &Their Roots. Oxford: 1969. P. 111-113.