Main Volcanoes Opala


Go to
Mutnovsky Gorely
Opala Volcano. Bibliography

Records: 43
Pages:  1 2 3 4 5
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskii L.D. The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bulletin of Volcanology. 1995. V. 57. № 6. P. 383-402. doi: 10.1007/BF00300984.    Annotation
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. V. 35. № 3. P. 463-476.    Annotation
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Braitseva Olga A., Ponomareva Vera V., Sulerzhitsky Leopold D., Melekestsev Ivan V., Bailey John Holocene Key-Marker Tephra Layers in Kamchatka, Russia // Quaternary Research. 1997. V. 47. № 2. P. 125-139. doi:10.1006/qres.1996.1876.    Annotation
Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in 14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Erster Teil. Historischer Bericht nach den Tagebüchern. 1890.    Annotation
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1890 erschienene erste Teil seines Werkes enthält den ausführlichen Bericht seiner Reise nach den Tagebüchern, ein getrennt erscheinender zweiter Teil die systematische Darstellung der Natur und der Geschichte Kamčatkas.
Ditmar von Karl Reisen und Aufenthalt in Kamtschatka in den Jahren 1851–1855. Zweiter Teil. Allgemeines über Kamtschatka. 1900. 273 p.    Annotation
Der Geologe Karl von Ditmar erkundete von 1851 bis 1855 im Auftrag der russischen Regierung die Bodenschätze Kamčatkas. Dabei erforschte er das Land und seine Bevölkerung aber weit über diesen Autrag hinaus, was seine eindrucksvollen Reisebeschreibungen zeigen. So verbrachte er im Sommer 1853 als erster Forscher längere Zeit bei den Korjaken auf der Halbinsel Tajgonos. Der 1900 erschienene zweite Teil seines Werkes enthält die systematische Darstellung der Natur und der Geschichte Kamčatkas sowie ein geografisches Lexikon.
Girina O.A., Gordeev E.I., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Romanova I.M. The 25 Anniversary Kamchatkan Volcanic Eruption Response Team // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018. P. 80-82.
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. V. 108. № B2. doi:10.1029/2001JB000312.    Annotation
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Holocene Volcanoes in Kamchatka. 2002.
Kyle Philip R., Ponomareva Vera V., Rourke Schluep Rachelle Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia // International Geology Review. 2011. V. 53. № 9. P. 1059-1097. doi:10.1080/00206810903442162.    Annotation
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall
deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological
events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize
individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three.
Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O,
CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative
bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical haracteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.
Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and
trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra
are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.
Ponomareva Vera V., Melekestsev Ivan V., Dirksen Oleg V. Sector collapses and large landslides on Late Pleistocene–Holocene volcanoes in Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2006. V. 158. № 1-2. P. 117-138. doi:10.1016/j.jvolgeores.2006.04.016.    Annotation
On Kamchatka, detailed geologic and geomorphologic mapping of young volcanic terrains and observations on historical eruptions reveal that landslides of various scales, from small (0.001 km3) to catastrophic (up to 20–30 km3), are widespread. Moreover, these processes are among the most effective and most rapid geomorphic agents. Of 30 recently active Kamchatka volcanoes, at least 18 have experienced sector collapses, some of them repetitively. The largest sector collapses identified so far on Kamchatka volcanoes, with volumes of 20–30 km3 of resulting debris-avalanche deposits, occurred at Shiveluch and Avachinsky volcanoes in the Late Pleistocene. During the last 10,000 yr the most voluminous sector collapses have occurred on extinct Kamen' (4–6 km3) and active Kambalny (5–10 km3) volcanoes. The largest number of repetitive debris avalanches (> 10 during just the Holocene) has occurred at Shiveluch volcano. Landslides from the volcanoes cut by ring-faults of the large collapse calderas were ubiquitous. Large failures have happened on both mafic and silicic volcanoes, mostly related to volcanic activity. Orientation of collapse craters is controlled by local tectonic stress fields rather than regional fault systems.

Specific features of some debris avalanche deposits are toreva blocks — huge almost intact fragments of volcanic edifices involved in the failure; some have been erroneously mapped as individual volcanoes. One of the largest toreva blocks is Mt. Monastyr' — a ∼ 2 km3 piece of Avachinsky Somma involved in a major sector collapse 30–40 ka BP.

Long-term forecast of sector collapses on Kliuchevskoi, Koriaksky, Young Cone of Avachinsky and some other volcanoes highlights the importance of closer studies of their structure and stability.


Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.