Вулкан Шивелуч. Библиография
Группировать:  
Записей: 366
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hoff U., Dirksen O., Dirksen V., Herzschuh U., Hubberten H.-W., Meyer H., van den Bogaard C., Diekmann B. Late Holocene diatom assemblages in a lake-sediment core from Central Kamchatka, Russia // Journal of Paleolimnology. 2012. Vol. 47. Vol. 4. P. 549-560. doi: 10.1007/s10933-012-9580-y.
   Аннотация
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.
Horváth Á, Carr J.L., Girina O.A., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12189-12206. https://doi.org/10.5194/acp-21-12189-2021, 2021.
   Аннотация
A geometric technique is introduced to estimate the height of volcanic eruption columns using the generally discarded near-limb portion of geostationary imagery. Such oblique observations facilitate a height-by-angle estimation method by offering close-to-orthogonal side views of eruption columns protruding from the Earth ellipsoid. Coverage is restricted to daytime point estimates in the immediate vicinity of the vent, which nevertheless can provide complementary constraints on source conditions for the modeling of near-field plume evolution. The technique is best suited to strong eruption columns with minimal tilting in the radial direction. For weak eruptions with severely bent plumes or eruptions with expanded umbrella clouds the radial tilt/expansion has to be corrected for either visually or using ancillary wind profiles. Validation on a large set of mountain peaks indicates a typical height uncertainty of ±500 m for near-vertical eruption columns, which compares favorably with the accuracy of the common temperature method.
Horváth Á, Girina O.A., Carr J.L., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12207-12226. https://doi.org/10.5194/acp-21-12207-2021.
   Аннотация
In a companion paper (Horváth et al., 2021), we introduced a new technique to estimate volcanic eruption column height from extremely oblique near-limb geostationary views. The current paper demonstrates and validates the technique in a number of recent eruptions, ranging from ones with weak columnar plumes to subplinian events with massive umbrella clouds and overshooting tops that penetrate the stratosphere. Due to its purely geometric nature, the new method is shown to be unaffected by the limitations of the traditional brightness temperature method, such as height underestimation in subpixel and semitransparent plumes, ambiguous solutions near the tropopause temperature inversion, or the lack of solutions in undercooled plumes. The side view height estimates were in good agreement with plume heights derived from ground-based video and satellite stereo observations, suggesting they can be a useful complement to established techniques.
Ivanov B.V., Chirkov A.M., Dubik Y.M., Khrenov A.P., Dvigalo V.N., Razina A.A., Stepanov V.V., Chubarova O.S. Active Volcanoes of Kamchatka and Kuril Islands: Status in 1982 // Volcanology and Seismology. 1988. Vol. 6. № 4. P. 623-634.
Ivanov B.V., Gavrilenko G.M., Dvigalo V.N., Ovsyannikov A.A., Ozerov A.Yu., Razina A.A., Tokarev P.I., Khrenov A.P., Chirkov A.M. Activity of Volcanoes in Kamchatka and the Kuril Islands in 1983 // Volcanology and Seismology. 1988. Vol. 6. № 6. P. 959-972.
Jiang Guoming, Zhao Dapeng, Zhang Guibin Seismic tomography of the Pacific slab edge under Kamchatka // Tectonophysics. 2009. Vol. 465. № 1–4. P. 190 - 203. doi: 10.1016/j.tecto.2008.11.019.
   Аннотация
We determine a 3-D P-wave velocity structure of the mantle down to 700 km depth under the Kamchatka peninsula using 678 P-wave arrival times collected from digital seismograms of 75 teleseismic events recorded by 15 portable seismic stations and 1 permanent station in Kamchatka. The subducting Pacific slab is imaged clearly that is visible in the upper mantle and extends below the 660-km discontinuity under southern Kamchatka, while it shortens toward the north and terminates near the Aleutian–Kamchatka junction. Low-velocity anomalies are visible beneath northern Kamchatka and under the junction, which are interpreted as asthenospheric flow. A gap model without remnant slab fragment is proposed to interpret the main feature of high-V anomalies. Combining our tomographic results with other geological and geophysical evidences, we consider that the slab loss may be induced by the friction with surrounding asthenosphere as the Pacific plate rotated clockwise at about 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow and the presence of Meiji seamounts. As a result, the slab loss and the subducted Meiji seamounts have jointly caused the Pacific plate to subduct under Kamchatka with a lower dip angle near the junction, which made the Sheveluch and Klyuchevskoy volcanoes shift westward.
Kirianov V.Yu. Assessment of Kamchatkan Ash Hazard to Airlines // Volcanology and Seismology. 1993. Vol. 14. № 3. P. 246-269.
Kirianov V.Yu. Volcanic Ash in Kamchatka as a Source of Potential Hazard to Air Traffic // Volcanic Ash and Aviation Safety: Proc. First Intern. Symp. on Volcanic Ash and Aviation safety. US Geological Survey Bull. US Geological Survey. 1994. Vol. 2047. P. 57-63. https://doi.org/10.3133/b2047.
Kirianov V.Yu., Egorova I.A., Litasova S.N. Volcanic ash on Bering Island (Commander Islands) and Kamchatkan Holocene Eruptions // Volcanology and Seismology. 1990. Vol. 8. № 6. P. 850-868.
Kirianov V.Yu., Solovieva N.A. Lateral variations in ash composition due to Eolian differentiation // Volcanology and Seismology. 1991. Vol. 12. № 4. P. 431-442.