Bibliography
Volcano:
Group by:  
Jump to:
Records: 2754
 2002
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A. Geochemical evidences of the genetic relationships between basalts of Klyuchevskoy and andesites of Bezymyanny volcanoes // The Japan Earth and Planetary Science Joint Meeting: Tokyo, Japan. 2002. P. K080-P003.
Almeev R.R., Ozerov A.Yu., Ariskin A.A., Kimura J.I. The role of hornblende fractionation in the generation of andesitic lavas of Bezymyanny volcano, Kamchatka: phase equilibria analysis // The Japan Earth and Planetary Science Joint Meeting: Tokyo, Japan. 2002. P. K080-P004.
Belousov Alexander, Voight Barry, Belousova Marina, Petukhin Anatoly Pyroclastic surges and flows from the 8-10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia // Bulletin of Volcanology. 2002. Vol. 64. № 7. P. 455-471. doi:10.1007/s00445-002-0222-5.
Braitseva O.A., Ponomareva V.V., Melekestsev I.V., Sulerzhitskiy L.D., Pevzner M.M. Holocene Kamchatka volcanoes. 2002.
Girina O.A., Chubarova O.S., Senyukov S.L. The Recent Activity of Sheveluch Volcano // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 121-122.
Girina O.A., Ozerov A.Yu., Nuzhdina I.N., Zelenski M.E. The Eruption of Bezymianny Volcano on August 7, 2001 // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 110-111.
Girina O.A., Rybin A.V., Kirianov V.Yu. A Proposal to Monitor Volcanic Activity in the Kurile Islands // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 120
Izbekov Pavel E., Eichelberger John C., Patino Lina C., Vogel Thomas A., Ivanov Boris V. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment // Geology. 2002. Vol. 30. № 9. P. 799-802.
   Annotation
Calcic cores in plagioclase of Karymsky andesite of the 1996–2000 eruptive cycle texturally and compositionally (both trace and major elements) mimic the plagioclase phenocrysts of basalt erupted 6 km away at the onset of the cycle. These observations support the view that simultaneous eruption of andesite and basalt at Karymsky in the beginning of the cycle represents an example of replenishment and eruption triggering of an andesitic reservoir. Homogeneity of andesitic output occurred within two months. This suggests to us that blending of injected basalt into reservoir magma was thorough and rapid.
Kirianov V.Yu., Neal C.A., Gordeev E.I., Miller T.P. The Kamchatkan Volcanic Eruption Response Team (KVERT) // USGS Fact Sheet. 2002. Vol. 064-02.
Korzhinsky Mikhail A., Botcharnikov Roman E., Tkachenko Sergey I., Steinberg Genrikh S. Decade-long study of degassing at Kudriavy volcano, Iturup, Kurile Islands (1990–1999): Gas temperature and composition variations, and occurrence of 1999 phreatic eruption // Earth, Planets and Space. 2002. Vol. 54. № 3. P. 337-347. doi:10.1186/BF03353032.
   Annotation
A high-temperature (up to 940°C) fumarolic activity at Kudriavy volcano had been studied during 1990–1999. The maximum gas temperatures of the fumaroles were measured in 1992 as 940°C, then gradually decreased with time and reached to 907°C in 1999. Gas composition of the high-temperature fumarole became enriched in H2O and depleted in other gas components, in particular in CO2. Hydrogen isotopic compositions of the high-temperature fumarolic gases were gradually depleted in deuterium. The gradual and continuous decrease in temperature and changes in gas composition observed during the last 10-year suggest that a magmatic melt have been degassing in a relatively steady-state manner from a single magma chamber. The detail investigations in 1998 and 1999 revealed short-term changes in gas composition characterized by sporadic increases in H2, CO2, and Stotal after intense precipitations. Small-scale eruptions occurred on October 7, 1999 at the summit. The ratios of major gas components (C/S, C/Cl, S/Cl, C/F, S/F, and Cl/F) significantly increased just prior to the eruption. The eruption at the Kudriavy volcano in 1999 was likely a phreatic eruption as a result of the intense precipitations after unusually long dry period. Meteoric water penetrated into the hot zone of volcano edifice and rapidly boiled causing the eruption.