Main BibliographyПо дате публикаций
 
 Bibliography
Volcano:

 
Jump to:
Records: 2206
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
 2009
Gavrilenko M., Ozerov A. Evolution of the magmatic melts at Gorely volcano (Kamchatka) // 2009 Portland Geological Society of America Annual Meeting (18-21 October 2009). Abstracts with Programs. 2009. V. 41. № 7. P. 645
Gavrilenko M., Ozerov A. High-Magnesia Basalts – Source of Calc-Alkaline Series of Gorely Volcano (Kamchatka) // 6th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks, Alaska (USA). June 22-26, 2009. 2009.
Girina O.A., Carter A.J. 2006-2008 Eruptions of Bezymianny Volcano // Mitigating natural hazards in active arc environments. Abstracts. 6rd Biennial Workshop on Japan- Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks. June 22-26. Fairbanks: 2009. С. 75
Girina O.A., Neal C.A. Kamchatkan Volcanic Eruption Respouns Team (KVERT) Project in 2006-2009 // Mitigating natural hazards in active arc environments. Abstracts. 6rd Biennial Workshop on Japan- Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks. June 22-26. 2009. P. 265
Girina O.A., Ushakov S.V., Malik N.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Kotenko L.V. The active volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007 // Journal of Volcanology and Seismology. 2009. V. 3. № 1. P. 1-17. doi: 10.1134/S0742046309010011.    Annotation
Eight strong eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoi, Shiveluch, and Karymskii) and Chikurachki Volcano on Paramushir Island, North Kurils took place in 2007. In addition, an explosive event occurred on Mutnovskii Volcano and increased fumarole activity was recorded on Avacha and Gorelyi volcanoes in Kamchatka and Ebeko Volcano on Paramushir Island, North Kurils. Thanks to close cooperation with colleagues involved in the Kamchatkan Volcanic Eruption Response Team (KVERT) project from the Elizovo Airport Meteorological Center and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo VAAC, Anchorage VAAC, and Washington VAAC), all necessary precautions were taken for flight safety near Kamchatka.
Girina O.A., Ushakov S.V., Manevich A.G., Nuzhdaev A.A., Melnikov D.V., Malik N.A. KVERT Project: Danger for Aviation during Eruptions of Kamchatkan and Northern Kuriles Volcanoes in 2006-2008 // Mitigating natural hazards in active arc environments. Abstracts. 6rd Biennial Workshop on Japan- Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks. June 22-26. 2009. P. 54
Ishimaru Satoko, Arai Shoji Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle // Lithos. 2009. V. 107. № 1–2. P. 93 - 106. doi: 10.1016/j.lithos.2008.07.005.    Annotation
Silicate glasses in peridotite xenoliths from Avacha volcano have high SiO2 (up to 72 wt.) and highly SiO2-oversaturated characteristics; normative quartz content is up to 50 wt.. The glasses represent secondary melts solidified after interaction with mantle peridotite, i.e. crystallization of secondary orthopyroxene at the expense of olivine. We identified two kinds of silicate glasses in Avacha peridotites; one is higher in K2O and enriched in Rb, Ba, U, and Pb than the other. The glasses show basically similar chemical characteristics to the host basaltic andesite to andesite of the Avacha volcano. These chemical characteristics are inherited from slab-derived fluids/melts, which metasomatize the mantle wedge and induce partial melting. The differences of chemical features among the Avacha glasses are attributed to chemical difference of the slab-derived fluids/melts, possibly due to the difference of sediments/basalt ratio of the relevant slab. The low-degree partial melt of peridotite assisted by these fluids/melts, is primarily SiO2-oversaturated, and can conduct silicate metasomatism, evolving through interaction with surrounding mantle peridotite, i.e. formation of orthopyroxene at the expense of olivine. Highly silicic glasses, also reported from peridotite xenoliths from oceanic hotspots and continental rift zones, mostly result from assimilation of orthopyroxene by SiO2-undersaturated melts, which crystallize clinopyroxene and olivine. The glasses also show similar trace-element patterns to their host alkali basaltic magmas, as in the case of arc glasses/calc-alkali magmas. If the glasses in peridotite xenoliths are of silicate metasomatism origin, they are similar in chemistry to host magmas. Reaction between carbonatite melts and peridotites shows the same petrographical feature as that of SiO2-undersaturated silicate melts with peridotites. The glasses originated from carbonatite metasomatism, however, exhibit clearly different trace-element patterns from their host alkali basaltic magmas.
Ishimaru Satoko, Arai Shoji, Shukuno Hiroshi Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka // Earth and Planetary Science Letters. 2009. V. 284. № 3–4. P. 352 - 360. doi: 10.1016/j.epsl.2009.04.042.    Annotation
Lithospheric mantle is inferred to be more oxidized than the asthenosphere, and mantle-wedge peridotites are characterized by high oxidation state relative to abyssal and continental peridotites due to addition of slab-derived fluids or melts. We found metals (native Ni, Fe silicides, native Fe and possible native Ti) from otherwise oxidized sub-arc mantle peridotite xenoliths from Avacha volcano, Kamchatka. This is contrary to the consensus and experimental results that the metals are stable only in deeper parts of the mantle (> 250 km). The metals from Avacha are different in chemistry and petrography from those in serpentinized peridotites. The Avacha metals are characteristically out of chemical equilibrium between individual grains as well as with surrounding peridotite minerals. This indicates their independent formation from different fluids. Some of the Avacha metals form inclusion trails with fluids and pyroxenes, leading to the inference that very local metal saturation resulted from rapid supply (‘flashing’) of reducing fluids from deeper levels. The fluids, possibly rich in H2, are formed by serpentinization at the cold base of the mantle wedge just above the slab, and they reduce overlying peridotites. We propose a metal-saturated peridotite layer, underlying the main oxidized portion, within the mantle wedge beneath the volcanic front to fore-arc region.
Jiang Guoming, Zhao Dapeng, Zhang Guibin Seismic tomography of the Pacific slab edge under Kamchatka // Tectonophysics. 2009. V. 465. № 1–4. P. 190 - 203. doi: 10.1016/j.tecto.2008.11.019.    Annotation
We determine a 3-D P-wave velocity structure of the mantle down to 700 km depth under the Kamchatka peninsula using 678 P-wave arrival times collected from digital seismograms of 75 teleseismic events recorded by 15 portable seismic stations and 1 permanent station in Kamchatka. The subducting Pacific slab is imaged clearly that is visible in the upper mantle and extends below the 660-km discontinuity under southern Kamchatka, while it shortens toward the north and terminates near the Aleutian–Kamchatka junction. Low-velocity anomalies are visible beneath northern Kamchatka and under the junction, which are interpreted as asthenospheric flow. A gap model without remnant slab fragment is proposed to interpret the main feature of high-V anomalies. Combining our tomographic results with other geological and geophysical evidences, we consider that the slab loss may be induced by the friction with surrounding asthenosphere as the Pacific plate rotated clockwise at about 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow and the presence of Meiji seamounts. As a result, the slab loss and the subducted Meiji seamounts have jointly caused the Pacific plate to subduct under Kamchatka with a lower dip angle near the junction, which made the Sheveluch and Klyuchevskoy volcanoes shift westward.
Krasheninnikov Stepan, Portnyagin Maxim, Ponomareva V.V., Bergal-Kuvikas Olga, Mironov Nikita Periodic volcanic activity of Klyuchevskoy and Ushkovsky volcanoes during the early Holocene inferred from tephra study 2009.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru