Bibliography
Volcano:
Group by:  
Jump to:
Records: 2577
 2008
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Magmatic melts evolution at Gorely volcano (Southern Kamchatka) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. Vol. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.
   Annotation
На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
Ozerov A. Gas-hydrodynamic model of basalt explosions (based on experimental data) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Ozerov A. Types and Mechanisms of Basaltic Explosions: Environmental Observations and Experimental Data // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 7
Ozerova N., Ozerov A. Atmochemical halos of mercury (Hg) within the area of active volcanic edifices in Kamchatka // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 7
Ozerova N., Ozerov A. Mercury (Hg) in the near-ground atmosphere of active volcanic edifices in Kamchatka // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Portnyagin Maxim, Ponomareva Vera, Bindeman Ilya, Bogaard Christel, Krasheninnikov Stepan, Bergal-Kuvikas Olga, Mironov Nikita, Plechova Anastasia, Hoernle Kaj Millennium-scale major element variations of Klyuchevskoy volcano magmas (Kamchatka) revealed from high-resolution study of tephra deposits // IAVCEI, Reykjavik. 2008.
Tibaldi Alessandro, Corazzato Claudia, Kozhurin Andrey, Lagmay Alfredo F.M., Pasquarè Federico A., Ponomareva Vera V., Rust Derek, Tormey Daniel, Vezzoli Luigina Influence of substrate tectonic heritage on the evolution of composite volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion // Global and Planetary Change. 2008. Vol. 61. № 3-4. P. 151-174. doi:10.1016/j.gloplacha.2007.08.014.
   Annotation
This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia–Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank instability in directions respectively perpendicular and oblique to fault strike. This destabilization can evolve to lateral collapse with triggering mechanisms such as seismic activity or magmatic intrusion.
Андреев В.И., Магуськин М.А., Озеров А.Ю. Состояние вулкана Карымский в 2007 г. // Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 27-29 марта 2008 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2008. С. 3-10.
Блох Ю.И., Бондаренко В.И., Рашидов В.А., Трусов А.А. Подводный вулкан Берга (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 12. № 2. С. 70-75.
   Annotation
The authors have studied the flat-topped Berg submarine-volcano. The volcano likely used to emerge above sea level in its past history, but suffered the top attrition subsequently. The edifice is composed as by dense rocks with prevailing andesibasalts and basalts, so by mouldy volcanic rock formations. The most magnetized lava flows effused near the top on the western slope after the volcano had sunk. These flows are possibly composed by basalts and are the youngest within the edifice.