Main BibliographyПо дате публикаций
 
 Bibliography
Volcano:

 
Jump to:
Records: 2100
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 2002
Хренов А.П., Маханова Т.М., Богатиков О.А., Платэ А.Н. Результаты аэрокосмических исследований вулканов Камчатки (Ключевская группа вулканов) // Вулканология и сейсмология. 2002. № 2. С. 3-20.    Annotation
Long-continues field, and air- and space-borne studies of Kamchatkan volcanoes carried out within the framework of the International Russian-American project "Earth Sciences". In conjunction with the use of deep seismic sounding observations, yielded materials of remote sounding which have been mostly processed for the Klyuchevskoy volcanic cluster, this being the most active and productive in Kamchatka. For the first time ever,
a digital map of volcanoes of the Klyuchevskoy cluster to scale 1 : 100000 has been made. All cinder cones were superposed on the map in a system of coordinates with special indication of the cinder cones in the regional zone of areal volcanism and the eruptive centers of bocca eruptions on Klyuchevskoy volcano along with their petrochemical characteristics and ages. This paper also provides information on the "single primary" magma
of Klyuchevskoy Volcano.
 2001
Belousov Alexander, Belousova Marina Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake, Kamchatka, Russia // Volcaniclastic Sedimentation in Lacustrine Settings. 2001. P. 35-60. № 10.1002/9781444304251.ch3.
Donnadieu Franck, Merle Olivier, Besson Jean-Claude Volcanic edifice stability during cryptodome intrusion // Bulletin of Volcanology. 2001. Т. 63. № 1. С. 61-72. doi:10.1007/s004450000122.    Annotation
Limit equilibrium analyses were applied to the 1980 Mount St. Helens and 1956 Bezymianny failures in order to examine the influence on stability of structural deformation produced by cryptodome emplacement. Weakening structures associated with the cryptodome include outward-dipping normal faults bounding a summit graben and a flat shear zone at the base of the bulged flank generated by lateral push of the magma. Together with the head of the magmatic body itself, these structures serve directly to localize failure along a critical surface with low stability deep within the interior of the edifice. This critical surface, with the safety coefficient reduced by 25–30%, is then very sensitive to stability condition variation, in particular to the pore-pressure ratio (ru) and seismicity coefficient (n). For ru=0.3, or n=0.2, the deep surface suffers catastrophic failure, removing a large volume of the edifice flank. In the case of Mount St. Helens, failure occurred within a material with angle of friction ~40°, cohesion in the range 105–106 Pa, and probably significant water pore pressure. On 18 May 1980, detachment of slide block I occurred along a newly formed rupture surface passing through the crest of the bulge. Although sliding of block I may have been helped by the basal shear zone, significant pore pressure and a triggering earthquake were required (ru=0.3 and n=0.2). Detachment of the second block was guided by the summit normal fault, the front of the cryptodome, and the basal shear zone. This occurred along a deep critical surface, which was on the verge of failure even before the 18 May 1980 earthquake. The stability of equivalent surfaces at Bezymianny Volcano appears significantly higher. Thus, although magma had already reached the surface, weaker materials, or higher pore pressure and/or seismic conditions were probably required to reach the rupture threshold. From our analysis, we find that deep-seated sector collapses formed by removing the edifice summit cannot generally result from a single slide. Cryptodome-induced deformation does, however, provide a deep potential slip surface. As previously thought, it may assist deep-seated sector collapse because it favors multiple retrogressive slides. This leads to explosive depressurization of the magmatic and hydrothermal systems, which undermines the edifice summit and produces secondary collapses and explosive blasts.
Maximov A.P. Physicochemical mechanism of the deep degassing of aqueous magmas // Experiment in Geosciences. 2001. V. 10. № 1. P. 122-123.
Tolstykh M.L., Naumov V.B., Ozerov A.Yu., Kononkova N.N. Composition of Magmas of the 1996 Eruption at the Karymskii Volcanic Center, Kamchatka: Evidence from Melt Inclusions // Geochemistry International. 2001. V. 39. № 5. P. 447-458.
Waltham Tony A guide to the volcanoes of southern Kamchatka, Russia // Proceedings of the Geologists' Association. 2001. V. 112. № 1. P. 67 - 78. doi: 10.1016/S0016-7878(01)80051-1.    Annotation
The remote sub-arctic wilderness of Kamchatka contains a line of active volcanoes above the Pacific Ocean plate subduction zone. This guide is based on the itinerary of the 1999 GA excursion to sites around Petropavlovsk. Descriptions cover the Uzon caldera and its Valley of Geysers, and the volcanoes of Avacha, Karimsky, Gorely and Mutnovsky.
Алмеев Р.Р., Арискин A.A., Озеров А.Ю. ЭВМ-модель кристаллизации известково-щелочных магм (на примере вулканов Ключевской и Безымянный) // Проблемы геологии континентов и океанов: докл. рос. ученых - участников 31-го МГК (школа семинар на НИС "Академик Иоффе", июль-авг. 2000 г.). 2001. С. 167-174.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Потенциальная опасность от извержений Авачинского вулкана // Геодинамика и вулканизм Курило-Камчатской островодужной системы. 2001. С. 390-407.    Annotation
Реконструирована история эруптивной активности Авачинского вулкана за последние 10 тыс.лет, определены возраст, частота и параметры прошлых извержений, характер и масштабы опасных вулканических явлений. Дана оценка вулканической опасности, связанной с деятельностью Молодого конуса вулкана, начавшего формироваться 3800 лет назад. Характер и параметры его извержений положены в основу составленной карты вулканической опасности для прилегающих территорий.

History of eruptive activity of Avachinsky volcano over the last 10 mln years has been reconstructed; age, frequency and parameters of the past eruptions, character and scale of potentially hazardous volcanic phenomena have been determined. Assessment of volcanic hazard has been given associated with the activity of Molodoi cone which began its formation 38000 years ago. Specific features of its eruption are used as the basis for the map of volcanic hazard for adjacent territories.
Базанова Л.И., Певзнер М.М. Хангар - еще один действующий вулкан на Камчатке // Доклады Академии наук. 2001. Т. 377. № 6. С. 800-802.
Богатиков О.А., Мелекесцев И.В., Гурбанов А.Г., Сулержицкий Л.Д., Кощуг Д.Г., Грюн Р.В., Черных В.И., Аракелянц М.М., Кирьянов В.Ю., Газеев В.М., Гурбанов А.А., Пурига А.И., Трусов А.В. Катастрофическая плейстоценовая и голоценовая активность вулканического центра Эльбрус (Северный Кавказ, Россия): события и хронология по данным 14С, ЭПР и К-Ar датирования // Вулканология и сейсмология. 2001. № 2. С. 3-17.    Annotation
Реконструирована плейстоценовая и голоценовая активность вулканического центра Эльбрус (Северный Кавказ, Россия). Выявлены и продатированы различными методами (К-Ar, С, ЭПР) крупная (14 X 17 км, площадь 230 км2) кальдера обрушения, мощные этапы эксплозивного вулканизма, катастрофические лахары, лавовые потоки, землетрясения и региональные пожары. Установлено, что в голоцене сильные эксплозивные и эксплозивно-эффузивные извержения происходили в 7200-7300, 5800-6000, 5200-5300, 4000, 2900, 2600 гг. до н.э. и в I-П вв. н.э. Показано, что вулкан Эльбрус является потенциально активным и что его извержения могут сопровождаться катастрофическими явлениями.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru