Karymsky Volcano. Bibliography
Group by:  
Records: 257
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Толстых М.Л., Наумов В.Б., Бабанский А. Д., Богоявленская Г.Е., Хубуная С.А. Химический состав, летучие компоненты и элементы-примеси расплавов, формировавших андезиты вулканов Курило-Камчатского региона // Петрология. 2003. Т. 11. № 5. С. 451-470.
   Annotation
Проведены исследования расплавных включений в минералах некоторых вулканов Курило-Камчатского региона. Изучены андезитобазальты и андезиты вулканов, расположенных в пределах Центральной Камчатской депрессии (вулканы Шивелуч и Безымянный), Восточно-Камчатского вулканического пояса (вулканы Авачинский и Карымский) и на о. Итуруп, Южные Курилы (вулкан Кудрявый). Кроме того, изучены базальты извержения 1996 г. Карымского вулканического центра и дациты вулкана Дикий Гребень (Южная Камчатка). Использованы методы гомогенизации расплавных включений и анализ закаленных стекол этих включений с помощью электронного и ионного микрозонда. Изучено более 260 расплавных включений в минералах из 31 образца вулканических пород. Установлено, что составы расплавных включений во вкрапленниках андезитов сильно варьируют по основности: содержания SiO2 меняются от 56 до 80 мас. %, причем с ростом кремнезема закономерно уменьшаются содержания Аl2О3, FeO, MgO, CaO и увеличиваются содержания Na2O и К2О. При этом большая часть (~80 %) стекол включений имеет дацитовый и риолитовый состав. Однако составы кислых расплавов (SiO2 > 65 маc. %), формирующих андезиты, существенно отличаются от таковых, образующих дациты и риолиты, по содержаниям ТЮ2, FeO, MgO, CaO и К2О. На всех изученных вулканах также были обнаружены высококалиевые расплавы (К2О = 3.8-6.8 маc. %) независимо от содержаний в этих расплавах SiO2; (диапазон от 51.4 до 77.2 маc. %), что свидетельствует об участии в процессе генерации магматических расплавов всего региона какого-то компонента, селективно обогащенного калием. Впервые установленное широкое разнообразие состава расплавных включений в одних и тех же вкрапленниках плагиоклаза из андезитов вулкана Безымянный свидетельствует о сложной истории кристаллизации этих вкрапленников и, соответственно, эволюции расплавов, приведших к формированию андезитов. По содержаниям летучих компонентов расплавы разных вулканов значительно различаются. Максимальные концентрации Н2О установлены в расплавах вулканов Шивелуч (от 3.0 до 7.2 маc. % при среднем значении 4.7 маc. %) и Авачинский (4.7-4.8 маc. %), более низкие концентрации - в расплавах вулканов Кудрявый (0.1-2.6 маc. %), Дикий Гребень (0.4-1.8 маc. %) и Безымянный (<1 маc. %). Концентрации хлора в расплавах также различны: минимальные значения определены в расплавных включениях в минералахвулкана Безымянный (в среднем 0.09 маc. %), максимальные значения - в расплавных включениях в минералах андезитов вулкана Карымский (в среднем 0.26 маc. %). Промежуточные значения концентраций хлора в расплавах (0.13-0.20 маc. %) установлены для вулканов Авачинский, Дикий Гребень, Кудрявый и Шивелуч. По флюидным включениям СО2 в плагиоклазах андезитов вулкана Шивелуч определено давление, равное 350-1600 бар, что соответствует глубине магматической камеры 1.5-6 км. Определены концентрации 17 элементов-примесей в стеклах расплавных включений в плагиоклазах 5 вулканов (Авачинский, Безымянный, Дикий Гребень, Кудрявый и Шивелуч). По характеру распределения содержаний этих элементов изученные расплавы близки между собой: для всех отмечаются относительные минимумы по Nb и Ti и максимумы по В, К, Be, Li. По величине отношений Sr/Y, La/Yb, K/Ti и Ca/Sr расплавы близки типичным магмам островных дуг, а их различия между собой обусловлены региональными геохимическими особенностями. Кривые распределения редкоземельных элементов свидетельствуют о различной степени дифференцированности расплавов: на вулкане Кудрявый они более примитивны, а на вулкане Шивелуч наиболее дифференцированы.
Толстых М.Л., Наумов В.Б., Озеров А.Ю., Кононкова Н.Н. Состав магм извержения 1996 г. Карымского вулканического центра (Камчатка) по данным изучения расплавных включений // Геохимия. 2001. № 5. С. 498–509
Троицкий В.Д. Краткий геоморфологический очерк района Карымского вулкана // Труды Камчатской вулканологической станции. 1947. Вып. 3. С. 49-88.
Федотов С.А. Об извержениях в кальдере Академии Наук и Карымского вулкана на Камчатке в 1996 г., их изучении и механизме // Вулканология и сейсмология. 1997. № 5. С. 3-37.
   Annotation
This paper is concerned with the eruptions that began simultaneously in the Karymsky volcanic center, Kamchatka, in 1996 and associated phenomena. A significant earthquake swarm started occurring there on January 1, 1996 with magnitudes as high as 6.9. A monoton. summit eruption of Karymsky Volcano followed on January 2, which has continued discharging andesite-dacite lava at a rate of 0.8 t/s until March 1997 and later. Basalts were emplaced along a fissure after 28 000 years of repose producing a phreatomagmatic eruption in the Akademia Nauk caldera at pyroclastic discharge rates of over 800 t/s. The distance between the erupting vents is 6 km. Basic tnunamt. waves resulting from underwater explosions and a high tsunami were observed, a new peninsula developed in the caldera lake, the ground surface experienced an extension of more than 2,3 m, and the fresh-water caldera lake of volume 0.47 km3 was transformed into an acid one (pH 3,2). Brief information is provided on the state of the volcanic center by the late 1995, a successful prediction, and the eruptions themselves. We estimate the depth to the pressure center in the primary magma chamber (18,3 ± 0,8 km), the volume of the crustal magma chambers (400 km3), possible dimensions of the emplaced dike in the stronger crustal layers (thickness 0,7 m, length 4700 m). We discuss a likely mechanism for and relations between the observed processes and the eruptions.
Федотов С.А. Пробуждение // Поиск. 1996. № 3-4 (349-350). С. 15
Федотов С.А., Иванов Б.В., Двигало В.Н., Кирсанов И.Т., Муравьев Я.Д., Овсянников А.А., Разина А.А., Селиверстов Н.И., Степанов В.В., Хренов А.П., Чирков А.М. Деятельность вулканов Камчатки и Курильских островов в 1984 г. // Вулканология и сейсмология. 1985. № 5. С. 3-23.
Федотов С.А., Муравьев Я.Д., Иванов В.В., Леонов В.Л., Магуськин М.А., Гриб Е.Н., Озеров А.Ю., Карпов Г.А., Фазлуллин С.М., Шувалов Р.А., Лупикина Е.Г., Ушаков С.В. Извержения в кальдере Академии наук и Карымского вулкана в 1996-1997 гг. и их воздействие на окружающую среду // Глобальные изменения природной среды. Новосибирск: Изд-во СО РАН. 1998. С. 127-145.
Федотов С.А., Озеров А.Ю., Магуськин М.А., Иванов В.В., Карпов Г.А., Леонов В.Л., Двигало В.Н., Гриб Е.Н., Андреев В.И., Лупикина Е.Г., Овсянников А.А., Будников В.А., Бахтиаров В.Ф., Левин В.Е. Извержения Карымского вулкана в 1998-2000 гг., связанные с ними сейсмические, геодинамические и поствулканические процессы, их воздействие на окружающую среду / Катастрофические процессы и их влияние на природную среду. Вулканизм. М.: Наука. 2002. Т. 1. С. 117-160.
Филей А.А., Гирина О.А., Сорокин А.А. Восстановление оптических параметров вулканического H2SO4 по спутниковым данным // Оптика атмосферы и океана. Физика атмосферы. Материалы XXVIII Международного симпозиума [Электронный ресурс]. Томск: Изд-во ИОА СО РАН. 2022. С. B-311. doi: 10.56820/OAOPA.2022.76.43.001.
   Annotation
Работа посвящена методике восстановления оптических параметров вулканического H2SO4 по данным радиометра AHI спутника Himawari-8. Методика основана на использовании оптических моделей для различных смесей аэрозольных компонентов вулканического облака, представленных пеплом, кристаллами льда, каплями воды и каплями H2SO4. Использование многокомпонентных оптических моделей различного аэрозольного состава позволило оценить оптическую толщину и массовое содержание H2SO4 в сернокислом облаке, образованном после извержения вулкана Карымский 3 ноября 2021 г. Был проведен комплексный анализ спектральных характеристик сернокислого облака в коротковолновом и инфракрасном диапазоне длин волн, по результатам которого установлено, что сернокислое облако преимущественно представляет собой смесь капель H2SO4 и воды.
Фирстов П.П. Вулканические акустические сигналы диапазона 1,0 - 10 Гц и их связь с эксплозивным процессом / Отв. ред. Адушкин В.В. Петропавловск-Камчатский: КГПУ. 2003. 78 с.
   Annotation
Based on of experimental data obtained during almost 30 years period at the Kamchatka volcanic eruptions, acoustic signals in the range of 1,0-10 Hz are considered, generated immediately during the magma disebaige onto the surface due to its degassing. It is shown that the acoustic signals from this range generated by volcanic eruptions are weak shock airwaves in the nearby zone. They can be divided based on their of its impulse form and statistical parameters in to 6 types associated with different unsteady processes conditioned by magma degassing. The crater dimensions control the characteristic time of pulse of surplus pressure of volcanic shock airwaves. Acoustic signals contain information about eruption dynamics and crater geometry modifications, on the examples of terminal and lateral eruptions of the Kluchevskoi volcano in May-June, 1983. The author made estimations of explosive gas amount for three strombolian type eruptions, using acoustic signals parameters. Basis for a scientific direction – volcanic acoustics – is established.
The book is of special interest for specialists in volcanology, atmosphere acoustics and explosions.