Вулкан Авачинский. Библиография
Группировать:  
Записей: 203
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
McGimsey R.G., Neal C.A., Girina O.A. 2001 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1453. 2004. 53 p.
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Basanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 2 (1926-1991) // Volcanology and Seismology. 1994. Vol. 16. № 2. P. 93-114.
   Аннотация
Previous data are summarized and new evidence is presented on the Avacha eruptions of 1926-1927, 1938, and 1945. The last eruption of January 1991 is described. The dynamics of the Avacha eruptive activity is considered for a period of 1737-1991. The eruptions are classified into different types. The type and size of a future event are predicted and the related hazard is assessed. It is recommended that the southwestern and southern sectors of the Avacha surrounding should be declared forbidden for residential or industrial construction because of a high volcanic hazard. -Journal summary
Melekestsev I.V., Braitseva O.A., Dvigalo V.N., Bazanova L.I. Historical eruptions of Avacha volcano, Kamchatka. Attempt of modern interpretation and classification for long-term prediction of the types and parameters of future eruptions. Part 1 (1737-1909) // Volcanology and Seismology. 1994. Vol. 15. № 6. P. 649-665.
   Аннотация
Some of the previous views on the style of the Avacha eruptions during 1737-1909 are revised on the basis of new data obtained by the authors. The types of eruptions, their geological and geomorphological effects, and the related volcanic hazards are reassessed. All eruptions were explosive events, except for the 1894-1895 extrusive-explosive eruption. The eruptions of 1737, 1779, and 1827 are classified as large, the others, as mild or medium-size events. -from Journal summary
Melekestsev I.V., Kirianov V.Yu. When will Avacha Volcano in Kamchatka erupt? // Volcanology and Seismology. 1988. Vol. 6. № 6. P. 943-952.
Melekestsev I.V., Sulerzhitskiy L.D., Bazanova L.I., Braitseva O.A., Florenskaya N.I. Holocene catastrophic lahars at Avacha and Koryakskiy volcanoes in Kamchatka // Volcanology and Seismology. 1996. Vol. 17. № 4-5. P. 561-570.
   Аннотация
Remnants of five catastrophic lahars have been discovered, described, and dated by the carbon-14 method. They occurred during eruptions of Avacha (violent explosions with voluminous juvenile pyroclastics) and Koryakskiy (large fissure lava flows): 3500 to 3200 14C years ago or 1900-1500 years B.C. These lahars were much higher in vigor, hazard, and effect on the environment than the lahars generated by the historic eruptions of these volcanoes. -from Journal summary
Melnikov D.V., Ushakov S.V., Galle B. Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. 2014.
   Аннотация
During the 2012-2013 we have measured SO2 on Kamchatka volcanoes (Gorely, Mutnovsky, Kizimen, Tolbachik, Karymsky, Avachinsky) using DOAS (differential optical absorption spectroscopy). Mobile-DOAS, on a base of USB2000+, has been used as an instrument. The goal of this work was to estimate SO2 emission by Kamchatka volcanoes with the different types of activity. Mutnovsky and Avachinsky during the measurements period passively degassed with SO2 emission ~ 480 t/d and 210 t/d, respectively. Gorely volcano was very active, with intensive vapor-gas activity with gas discharge rate 800-1200 t/d. During the measurements at Karymsky volcano there were relatively weak explosive events (ash plum rose up to 0.5 km above the crater) with 5-10 minutes periodicity. For this time, SO2 discharge rate was ~350-400 t/d. Due to the remoteness and difficulties for accessibility of Kizimen volcano, the measurements were done only once – on October 15th, 2012. 5 traverses have been done above the gas plume. SO2 emission was ~ 700 t/d. On Tolbachik fissure eruption we have measured SO2 emission repeatedly from January until August 2013. The intensive effusion of the lava flows (basaltic andesite by composition) and frequent explosions in the crater of the cinder cone were characteristic features of this eruption. The measured gas emission was from ~1500-2200 t/d in January until 600-800 t/d in August 2013. All measurements were made not permanently, but to the extent possible. Therefore, it is difficult to make detailed conclusions on the SO2 emission on these volcanoes. Nevertheless, this research may become a starting point for the development of the system of the constant monitoring of volcanic gases emission by the active volcanoes of Kamchatka.

Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy.
Nekrylov Nikolay, Kamenetsky V.S., Savelyev D.P., Gorbach N.V., Kontonikas-Charos Alkiviadis, Palesskii Stanislav V., Shcherbakov Vasily D., Kutyrev Anton V., Savelyeva O.L., Korneeva Alina, Kozmenko Olga A., Zelenski Michael E. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. 2022. Vol. 412. № 106838. P. 1-14. https://doi.org/10.1016/j.lithos.2022.106608.
   Аннотация
The geochemical variations of magmas across and along supra-subduction zones (SSZ) have been commonly attributed to profound changes in the phase and chemical compositions of the mantle source and subduction-derived melt and fluid fluxes, as well as the physical parameters (e.g. depth, temperature, oxygen fugacity etc) of slab dehydration, mineral breakdown and melting. Here we test the variability of the Late Quaternary primitive magmas in the southern and northern parts of the meridionally oriented Eastern Volcanic Belt (EVB) of Kamchatka, with a slab depth varying from 60 to 160 km. Eight high-Mg (Mg# > 60 mol%) basalts were characterized for major, trace and platinum-group element (PGE) abundances, as well as the compositions of olivine phenocrysts and olivine-hosted spinel inclusions. The basalts in our study are geochemically typical of SSZ magmas and contain similar liquidus assemblages of forsteritic olivine (Mg# 78–92 mol%), low-Ti Cr-spinel and clinopyroxene. Although the absolute abundances of major and trace elements, and their ratios, in the basalts fluctuate to some extent, the observed variability cannot be correlated with any of considered parameters in the geometry of the Kamchatka SSZ and conditions of melting. This unexpected result led to the evaluation of the platinum-group element (PGE) systematics against the lithophile and chalcophile trace element geochemistry and the compositions of phenocrysts. Total whole-rock PGE content varies from 2.3 to 11.7 ppb, whereas the normalized PGE concentration patterns are typical for supra-subduction zones magmas and broadly similar in all studied samples. They are enriched in Rh, Pd and Pt relative to mid-ocean ridge basalts (MORB) and have nearly identical concentrations of Ir-group PGE. The only parameter that correlates well with PGE contents is the average Mg# of olivine phenocrysts from 84 to 90.3 mol%. This is interpreted to result from minor cryptic fractionation of sulfide melt, together with primitive olivine, in low-to-mid crustal conditions. Negative Ru anomalies on chondrite-normalized diagrams correspond to the Fe2+/Fe3+ ratios in spinel (a proxy for magma redox conditions), which reflects a replacement of monosulfide solid solution by laurite in the mantle wedge during oxidation.
Ponomareva V.V., Churikova T., Melekestsev I.V., Braitseva O.A., Pevzner M., Sulerzhitskii L. Late Pleistocene-Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region / Volcanism and Subduction: The Kamchatka Region. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 165-198. doi: 10.1029/172GM15.
   Аннотация
Late Pleistocene-Holocene volcanism in Kamchatka results from the subduction of the
Pacific Plate under the peninsula and forms three volcanic belts arranged in en echelon manner
from southeast to northwest. The cross-arc extent of recent volcanism exceeds 250 km and
is one of the widest worldwide. All the belts are dominated by mafic rocks. Eruptives with
SiO2>57% constitute ~25% of the most productive Central Kamchatka Depression belt and
~30% of the Eastern volcanic front, but <10% of the least productive Sredinny Range belt.
All the Kamchatka volcanic rocks exhibit typical arc-type signatures and are represented
by basalt-rhyolite series differing in alkalis. Typical Kamchatka arc basalts display a strong
increase in LILE, LREE and HFSE from the front to the back-arc. La/Yb and Nb/Zr increase
from the arc front to the back arc while B/Li and As, Sb, B, Cl and S concentrations decrease.
The initial mantle source below Kamchatka ranges from N-MORB-like in the volcanic front
and Central Kamchatka Depression to more enriched in the back arc. Rocks from the Central
Kamchatka Depression range in 87Sr/86Sr ratios from 0.70334 to 0.70366, but have almost
constant Nd isotopic ratios (143Nd/144Nd 0.51307–0.51312). This correlates with the highest
U/Th ratios in these rocks and suggest the highest fluid-flux in the source region.
Holocene large eruptions and eruptive histories of individual Holocene volcanoes have been
studied with the help of tephrochronology and 14C dating that permits analysis of time-space
patterns of volcanic activity, evolution of the erupted products, and volcanic hazards.
Ponomareva Vera V., Melekestsev Ivan V., Dirksen Oleg V. Sector collapses and large landslides on Late Pleistocene–Holocene volcanoes in Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2006. Vol. 158. № 1-2. P. 117-138. doi:10.1016/j.jvolgeores.2006.04.016.
   Аннотация
On Kamchatka, detailed geologic and geomorphologic mapping of young volcanic terrains and observations on historical eruptions reveal that landslides of various scales, from small (0.001 km3) to catastrophic (up to 20–30 km3), are widespread. Moreover, these processes are among the most effective and most rapid geomorphic agents. Of 30 recently active Kamchatka volcanoes, at least 18 have experienced sector collapses, some of them repetitively. The largest sector collapses identified so far on Kamchatka volcanoes, with volumes of 20–30 km3 of resulting debris-avalanche deposits, occurred at Shiveluch and Avachinsky volcanoes in the Late Pleistocene. During the last 10,000 yr the most voluminous sector collapses have occurred on extinct Kamen' (4–6 km3) and active Kambalny (5–10 km3) volcanoes. The largest number of repetitive debris avalanches (> 10 during just the Holocene) has occurred at Shiveluch volcano. Landslides from the volcanoes cut by ring-faults of the large collapse calderas were ubiquitous. Large failures have happened on both mafic and silicic volcanoes, mostly related to volcanic activity. Orientation of collapse craters is controlled by local tectonic stress fields rather than regional fault systems.

Specific features of some debris avalanche deposits are toreva blocks — huge almost intact fragments of volcanic edifices involved in the failure; some have been erroneously mapped as individual volcanoes. One of the largest toreva blocks is Mt. Monastyr' — a ∼ 2 km3 piece of Avachinsky Somma involved in a major sector collapse 30–40 ka BP.

Long-term forecast of sector collapses on Kliuchevskoi, Koriaksky, Young Cone of Avachinsky and some other volcanoes highlights the importance of closer studies of their structure and stability.
Puzankov M.Yu., Bazanova L.I., Maximov A.P., Moskalyova S.V. The initial plinian basic andesite eruptions of the young cone, Avachinsky volcano (Kamchatka) // IV International Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs. August 21-27, 2004, Petropavlovsk-Kamchatsky. 2004. P. 158-160.