Avachinsky Volcano. Bibliography
Group by:  
Records: 196
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Viccaro Marco, Giuffrida Marisa, Nicotra Eugenio, Ozerov Alexey Yu. Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the plumbing system geometry // Lithos. 2012. Vol. 140–14. P. 11 - 24. doi: 10.1016/j.lithos.2012.01.019.
   Annotation
Textural and compositional features of plagioclase phenocrysts of the 1991 eruption lavas at Avachinsky Volcano (Kamchatka, Russia) were used to investigate the feeding system processes. Volcanics are porphyritic basaltic andesites and andesites with low-K affinity. A fractionation modeling for both major and trace elements was performed to justify the development of these evolved compositions. The occurrence of other magma chamber processes was verified through high-contrast BSE images and core-to-rim compositional profiles (An and FeO wt.) on plagioclase crystals. Textural types include small and large-scale oscillation patterns, disequilibrium textures at the crystal core (patchy zoning, coarse sieve-textures, dissolved cores), disequilibrium textures at the crystal rim (sieve-textures), melt inclusion alignments at the rim. Disequilibrium textures at the cores may testify episodes of destabilization at various decompression rates under water-undersaturated conditions, which suggests different pathways of magma ascent at depth. At shallower, water-saturated conditions, plagioclase crystallization continues in a system not affected by important chemical-physical perturbations (oscillatory zoning develops). Strongly sieve-textured rims, along with An increase at rather constant FeO, are evidence of mixing before the 1991 eruption between a residing magma and a hotter and volatile-richer one. The textural evidence implies that crystals underwent common histories at shallow levels, supporting the existence of a large magma reservoir whose top is at ~ 5.5 km of depth. Distinct textures at the outer rims in a hand-size sample are evidence that crystals mix mechanically at very shallow levels, probably in a small reservoir at ~ 1.8 km of depth.
Volcano observatory notification to aviation (VONA/KVERT). 2011.
Waltham Tony A guide to the volcanoes of southern Kamchatka, Russia // Proceedings of the Geologists' Association. 2001. Vol. 112. № 1. P. 67 - 78. doi: 10.1016/S0016-7878(01)80051-1.
   Annotation
The remote sub-arctic wilderness of Kamchatka contains a line of active volcanoes above the Pacific Ocean plate subduction zone. This guide is based on the itinerary of the 1999 GA excursion to sites around Petropavlovsk. Descriptions cover the Uzon caldera and its Valley of Geysers, and the volcanoes of Avacha, Karimsky, Gorely and Mutnovsky.
Zubov A.G., Ananyev V.V. Testing of the Titanomagnetite Method to Detect Magmatic Chamber Depth at Avachinsky Stratovolcano and Tolbachik Fissure Eruption // 10th International Conference “PROBLEMS OF GEOCOSMOS”. Book of Abstracts. St. Petersburg, Petrodvorets, October 6-10, 2014. St. Peterburg: Физфак СПбГУ. 2014. P. 81
   Annotation
Two volcanoes were tested using the titanomagnetite method in order to detect the magma chamber depth. Curie temperature of andesite tephra shows that the magmatic chamber was situated on the depth of 18±7 km under Avachinsky Volcano ~5 Ka ago, but one of the basalt-andesite tephra from Avachinsky results the chamber depth of 32±6 km ~3 Ka ago. This method applied to the lava from Tolbachik Fissure Eruption (TFE) shows a chamber depth of 47±5 km. This result is inconsistent slightly with the depth of 35±6 km obtained by our microzond analysing of element composition of titanomagnetite grains into lava sample from earlier phase of the same eruption. This two different results between TFE lava samples may occur from magma differentiation or this is a methodical or occasional error. To know true it needs a sample statistics. At present, more microzond data from Tolbachik Fissure Eruption are being analyzed.
Апрелков С.Е., Борзунова Г.П. Молодые вулканические образования окрестностей Авачинской бухты // Вопросы географии Камчатки. 1963. С. 34-40.
Апродов В.А. Вулканы. М.: Мысль. 1982. 367 с.
   Annotation
Справочник содержит характеристику около трех тысяч вулканов земного шара, сгруппированных по вулканическим поясам и другим районам проявления вулканизма. Этим поясам и районам предшествует их общая геолого-географическая характеристика. Сведения о вулканах включают географическое положение, морфологию, геологическую структуру, активность и т.д. Книга рассчитана не только на специалистов, но и на более широкий круг читателей.
Базанова Л.И., Брайцева О.А., Дирксен О.В., Сулержицкий Л.Д., Данхара Т. Пеплопады крупнейших голоценовых извержений на траверсе Усть-Большерецк - Петропавловск-Камчатский: источники, хронология, частота // Вулканология и сейсмология. 2005. № 6. С. 30-46.
Базанова Л.И., Брайцева О.А., Иванов Б.В., Мелекесцев И.В. Декадный вулкан Авачинский на Камчатке // Вестник ДВО РАН. 1999. № 3. С. 126-135.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Оценка вулканической опасности от Авачинского вулкана, Камчатка, Россия // Взаимосвязь между тектоникой, сейсмичностью, магмообразованием и извержениями вулканов в вулканических дугах. Материалы IV Международного совещания по процессам в зонах субдукции Японской, Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: ИВиС ДВО РАН. 2004. С. 51-52.
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Потенциальная опасность от извержений Авачинского вулкана / Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН. 2001. С. 390-407.
   Annotation
History of eruptive activity of Avachinsky volcano over the last 10 mln years has been reconstructed; age, frequency and parameters of the past eruptions, character and scale of potentially hazardous volcanic phenomena have been determined. Assessment of volcanic hazard has been given associated with the activity of Molodoi cone which began its formation 38000 years ago. Specific features of its eruption are used as the basis for the map of volcanic hazard for adjacent territories.