Главная БиблиографияПо дате публикаций
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:
Количество записей: 1949
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 2018
Melnikov D.V., Volynets Anna Spatial and morphometric analyses of Anaun monogenetic volcanic field (Sredinny Range, Kamchatka) // 7th International Maar Conference, Olot, Catalonia, Spain. 2018. P. 61    Аннотация
Monogenetic volcanic fields are frequently located in the faulted area and in clusters which are associated with the particular geometry of the magmatic chambers and structures of the magma plumbing system in the crust. The method of cluster analyses of the spatial distribution and morphometric characteristics of the cinder cones was used in our research of the conditions of origin and evolution of one of the largest monogenetic fields in Kamchat-ka back-arc-the Anaunsky Dol, or Anaun MVF. Kamchat-ka subduction system is located at the northwestern part of the Pacific at the convergent boundary of the Okhotsk and Pacific plates. Today, Sredinny Range represents its back-arc part and is characterized by the wide distribution of the monogenetic volcanic fields: it has more than 1000 cinder cones, which deposits cover the area of about 8500 km2 (Laverov, 2005; Ogorodov et al., 1972) (Fig. 1). Sredinny Range has a complex structure with several volcanic provinces with different geological history and variable composition of products. Anaun monogenetic volcanic field occupies one of the lowest sections of the whole Sredinny Range. The youngest volcanism in this area (according to the geological map, it was formed in Quaternary times, although our geochemical research and isotopic dating shows its earlier age) is confined to the lowered block of basement rocks. Shield volcanoes, volcanic ridges, cinder and lava cones are located on a low-laying volcanic dale. We made an attempt to make a spatial analysis of distribution of the volcanic edifices and to quantitatively estimate the structural control of the magma plumbing channels. Based on a digital relief model (DEM SRTM, spatial resolution 30 m) we distinguished more than 100 morphometrically expressed cinder cones. For them, using semi-automatic mode, we estimated the morphometric characteristics: height, diameter of the basement, height/basement ratio, angle of the slope, volume of the edifice. With time, cinder cones change their shape due to the erosion processes. Therefore, finally the edifice height is decreased while the basement diameter increased. Determination of the morphometric parameters allowed us to compose a relative age scale for the cinder cones located in Anaun monogenetic volcanic field. Spatial analysis has shown that cones tend to form series of clusters, which are associated with the systems of lineaments. Statistically significant patterns in the cinder cones distribution were then compared with the strike of lineaments to estimate possible location of the magma feeding channels.
http://maar2018.com [связанный ресурс]
Romanova I.M., Girina O.A. Spatial Data Infrastructure for information support of volcanological investigations // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
Taran Yuri, Zelenski Mikhail, Chaplygin Ilya, Malik Natalia, Campion Robin, Inguaggiato Salvatore, Pokrovsky Boris, Kalacheva Elena, Melnikov Dmitry, Kazahaya Ryunosuke, Fischer Tobias Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes // Geochemistry, Geophysics, Geosystems. 2018. V. 19. V. 6. P. 1859-1880. doi: 10.1029/2018GC007477.    Аннотация
The Kuril Island arc extending for about 1,200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with ∼40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg, and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup, and Iturup) emit into the atmosphere > 90% of the total fumarolic gas of the arc. During the field campaigns in 2015–2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO2 flux were conducted on these volcanoes. Maximal temperatures of the fumaroles in 2015–2016 were 510°C (Ebeko), 440°C (Sinarka), 260°C (Kuntomintar), 720°C (Pallas), and 820°C (Kudryavy). The total SO2 flux (in metric tons per day) from fumarolic fields of the studied volcanoes was measured as ∼1,800 ± 300 t/d, and the CO2 flux is estimated as 1,250 ± 400 t/d. Geochemical characteristics of the sampled gases include δD and δ18O of fumarolic condensates, δ13C of CO2, δ34S of the total sulfur, ratios 3He/4He and 40Ar/36Ar, concentrations of the major gas species, and trace elements in the volcanic gas condensates. The mole ratios C/S are generally <1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with 3He/4He values of >7RA (where RA is the atmospheric 3He/4He). The highest 3He/4He ratios of 8.3RA were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.
Аникин Л.П., Силаев В.И., Чубаров В.М., Петровский В. А., Вергасова Л.П., Карпов Г.А., Сокоренко А.В., Овсянников А.А., Максимов А.П. Алмаз и другие акцессорные минералы в продуктах извержения 2008—2009 гг. Корякского вулкана (Камчатка) // Вестник ИГ Коми НЦ УрО РАН. 2018. № 2. С. 18-27. doi: 10.19110/2221-1381-2018-2-18-27.    Аннотация
В статье приведены новые данные об акцессорных минералах в пеплах, образовавшихся при фреатическом извержении вулкана Корякский в 2008—2009 гг. Охарактеризованы формы выделения, состав и свойства гранатов, корунда и дельталюмита, муассанита, сульфидов таллия, самородных металлических и углеродных фаз, включая алмаз, а также предположительно абиогенных конденсированных органических соединений. Особенностью корякских алмазов является очень мелкий размер и кубический габитус, что может свидетельствовать об их кристаллизации из газовой фазы в условиях значительных пересыщений по углероду. Обнаружения в пеплах на Корякском вулкане разнообразных по форме и цвету частиц и нитей конденсированных органических соединений подтверждает ранее сделанный вывод о систематическом неорганическом синтезе на современных вулканах достаточно высокоорганизованных предбиологических форм органического вещества.

The paper provides new data related to the accessory minerals found in ashes from phreatic eruption of Klyuchevskoy volcano in 2008—2009. We characterized form of extraction, composition and specific features of garnet, corundum, deltalumine, muassonite, sulfide thallium, native metal and carbon phases including micro-diamond, and also likely abiogenic condensed organic compound. A feature of the Koryak diamonds is a very small size and a cubic habit, which may indicate their crystallization from the gas phase under conditions of significant super saturation along the carbon. The detection of various particles and filaments of condensed organic compounds in the form and color in the ash of the Koryak volcano confirms the previous conclusion about systematic inorganic synthesis of highly organized prebiological forms of organic matter in modern volcanoes.
Гирина О.А. О действующих вулканах Камчатки и их изучении // "Заповедная Россия": материалы библиотечных чтений. Петропавловск-Камчатский: КГБУ Камчатская краевая детская библиотека им.В. Кручины. 2018. С. 5-14.
Гирина О.А., Гордеев Е.И., Маневич А.Г., Мельников Д.В., Нуждаев А.А., Романова И.М. Камчатской группе реагирования на вулканические извержения (KVERT) – 25 лет // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 29-30 марта 2018 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 24-27.
Гирина О.А., Ладыгин В.М. Эруптивная активность Ключевской группы вулканов Камчатки // IX Всероссийская научная конференция с международным участием «Вулканизм, биосфера и экологические проблемы». Майкоп: Магарин О.Г.. 2018. С. 39-44.
Гирина О.А., Лупян Е.А., Мельников Д.В., Маневич А.Г., Сорокин А.А., Крамарева Л.С., Уваров И.А., Кашницкий А.В. Извержение вулкана Безымянный 20 декабря 2017 года // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 3. С. 88-99. doi: 10.21046/2070-7401-2018-15-3-88-99.    Аннотация
Безымянный — один из наиболее активных вулканов Камчатки и мира. В декабре 2016 г. началась его активизация после четырёхлетнего молчания в течение 2012–2016 гг. В 2017 г. произошло три пароксизмальных эксплозивных извержения вулкана, событию 20 декабря с выносом пепла до 15 км над уровнем моря посвящена эта статья. Описан ход извержения и результаты его анализа, в том числе показано анимированное изображение движения пеплового облака от вулкана, выполненное по серии снимков Himawari-8 (http://dvrcpod.planeta.smislab.ru/animation/1513757110.gif), с наложением на него результатов моделирования распространения пеплового облака (http://dvrcpod.planeta.smislab.ru/animation/1513777733.gif). Эруптивное облако двигалось на северо-восток от вулкана со средней скоростью 100 км/ч. Основная площадь территории, охваченной пепловыми облаками, составляла около 78 000 км2, в том числе на суше — 42 600 км2. Пепловые облака после окончания извержения фиксировались в атмосфере на удалении до 1500–2000 км на северо-востоке от вулкана до 22 декабря 2017 г. Кроме отложений пепла, в результате извержения в долине Восточной и долине р. Сухая Хапица были образованы отложения пирокластических (протяжённостью 5–6 км от вулкана) и грязевых (до 18 км) потоков. Спутниковый мониторинг вулкана и анализ данных по его извержению проводился с помощью информационной системы VolSatView и автоматизированной информационной системы «Сигнал».

Bezymianny is one of the most active volcanoes in Kamchatka and the world. The intensification of its activity began in December 2016 after four years of silence during 2012–2016. There were three paroxysmal explosive volcanic eruptions in 2017; the paper is devoted to the event on December 20 with ash removal up to 15 km above sea level. We describe the course of the eruption and the results of its analysis, including an animated image of the motion of the ash cloud from the volcano, performed on a series of images of Himawari-8 (http://dvrcpod.planeta.smislab.ru/animation/1513757110.gif), with overlaid on it results of modeling the distribution of this ash cloud (http://dvrcpod.planeta.smislab.ru/animation/1513777733.gif). The eruptive cloud moved northeast of the volcano at an average speed of 100 km/h, the main area covered by ash clouds was about 78 000 km2, including 42 600 km2 on land. Ash clouds after the eruption were recorded in the atmosphere at a distance of 1500–2000 km to the northeast of the volcano until December 22, 2017. In addition to ash deposits, as a result of the eruption, deposits of pyroclastic flows (with run out to 5–6 km from the volcano) and mud streams (about 18 km) were formed in Vostochnaya Valley and Sukhaya Khapitsa River. Satellite monitoring of the volcano and analysis of the eruption data was carried out using information systems VolSatView and Signal.
http://d33.infospace.ru/d33_conf/sb2018t3/88-99.pdf [связанный ресурс]
Гирина О.А., Лупян Е.А., Сорокин А.А., Мельников Д.В., Маневич А.Г., Маневич Т.М. Спутниковые и наземные наблюдения эксплозивных извержений вулкана Жупановский (Камчатка, Россия) в 2013 и 2014–2016 гг. // Вулканология и сейсмология. 2018. № 1. С. 3-17. doi: 10.7868/S0203030618010017.    Аннотация
Активный андезитовый вулкан Жупановский состоит из четырех слившихся конусов стратовулканов. Исторические эксплозивные извержения в 1940, 1957, 2014–2016 гг. происходили из конуса Приемыш. Недавние извержения Жупановского были изучены с использованием спутниковых данных, полученных из информационной системы “Мониторинг активности вулканов Камчатки и Курил” (VolSatView), а также некоторых видео- и визуальных наблюдений вулкана. Первое извержение Жупановского началось 22 октября и продолжалось до 24 октября 2013 г. Центрами мощного выноса газовых шлейфов, содержащих некоторое количество пепла, были фумаролы, расположенные на западном склоне Приемыша. Новое извержение вулкана началось 6 июня 2014 г. и продолжалось до 20 ноября 2016 г. Эксплозивная активность Жупановского в 2014–2016 гг. была неравномерной, на спутниковых снимках пепловые шлейфы были отмечены примерно 112 дней в течение 17 месяцев. Наиболее активно вулкан работал с июня до октября и в ноябре 2014 г., с января до апреля 2015 г. и в январе–феврале 2016 г., в это время на спутниковых снимках в районе конуса Приемыш почти постоянно отмечалась яркая термальная аномалия. Кульминацией извержения вулкана Жупановский в 2014–2016 гг. были эксплозивные события и обрушения частей конуса Приемыш 12 и 14 июля и 30 ноября 2015 г. и 12 февраля и 20 ноября 2016 г.
Гирина О.А., Мельников Д.В., Маневич А.Г., Демянчук Ю.В., Нуждаев А.А. Вулкан Безымянный в 2016-2018 гг. по данным KVERT // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 29-30 марта 2018 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 28-31.
Гирина О.А., Романова И.М., Мельников Д.В., Маневич А.Г., Лупян Е.А., Сорокин А.А., Королев С.П. Возможности анализа данных о вулканах Камчатки с помощью информационных технологий // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 29-30 марта 2018 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 32-35.
Королев С.П., Романова И.М., Мальковский С.И., Сорокин А.А. Сервис-ориентированный интерфейс для доступа к научным данным в области исследования и оперативного мониторинга состояния вулканов Камчатки и Северных Курил // Системы и средства информатики. 2018. Т. 28. № 2. С. 88-98. doi:10.14357/08696527180207.    Аннотация
На территории Дальнего Востока России располагаются десятки активных вулканов, требующих непрерывного внимания ученых для анализа и контроля их состояния. В качестве вспомогательных средств в этой работе выступают информационные системы (ИС), обеспечивающие решение различных научных задач. Однако разрозненность ИС и ограниченный доступ к информации существенно ограничивают возможность проведения комплексных исследований, что чревато в итоге катастрофическими последствиями для населения и народного хозяйства. Представлено описание разработанного сервис-ориентированного программного интерфейса, реализующего взаимодействие между основными существующими ИС для взаимного использования накопленных наборов научных данных и средств их обработки при проведении исследований и оперативного мониторинга состояния вулканов Камчатки и Северных Курил.

On the territory of the Russian Far East, there are dozens of active volcanoes, requiring continuous attention of scientists for analysis and control of their condition. To provide solutions of various scientific problems, different information systems were implemented. However, disunity of information systems and limited data exchange between them limit the possibility of carrying out complex studies. This may result in disastrous consequences for the population and different fields of people's activities. The article describes the developed service-oriented software interface that implements interaction between the main existing information systems. The mutual use of accumulated sets of scientific data and processing instruments improves research and operational monitoring of the state of volcanoes in Kamchatka and Northern Kuriles.
Котенко Т.А., Сандимирова Е.И., Котенко Л.В. Извержения вулкана Эбеко (Курильские острова) в 2016−2017 гг. // Вестник КРАУНЦ. Серия: Науки о Земле. 2018. Вып. 37. № 1. С. 32-42.    Аннотация
Приводятся данные о двух эксплозивных извержениях вулкана Эбеко в 2016−2017 гг.: 19−20 октября 2016 г. и с 8 ноября 2016 г. по конец августа 2017 г. Второе извержение продолжается. Эруптивный материал поступал из трех жерл: одного в Активной воронке и двух на дне Среднего кратера. Исследованы химический, минеральный и гранулометрический составы тефры. По составу тефры, которая представлена резургентным материалом, извержения классифицируются авторами как фреатические. Дается оценка состава и объема газовой эмиссии. Общая масса изверженного материала за рассмотренный период составила чуть больше 1.5 млн т.

The article presents data on two explosive eruptions produced by Ebeko Volcano 19 to 20 October, 2016 and over the period from November 8, 2016 till the end of August 2017. The latter eruption continues. The material was erupted from three vents: one vent is located in the Active funnel and two vents are at the bottom of Middle crater. The authors analyzed the chemical, mineral, and granulometric compositions of tephra. The studied tephra does not contain magmatic components. The authors classify the eruptions as phreatic. The paper provides the assessment of the composition and volume of gas emission. The gross total volume of the erupted material was estimated to exceed 1.5 million tons.
Кугаенко Ю.А., Салтыков В.А., Горбатиков А.В., Степанова М.Ю. Особенности глубинного строения зоны трещинных Толбачинских извержений (Камчатка, Ключевская группа вулканов) по комплексу геолого-геофизических данных // Физика Земли. 2018. № 3. С. 60-83. doi: 10.7868/S0002333718030055.    Аннотация
С использованием метода низкочастотного микросейсмического зондирования исследуется конфигурация магматической питающей системы Толбачинского Дола – региональной зоны ареального базальтового вулканизма в южной части Ключевской группы вулканов на Камчатке. Для получения исходных данных в 2010–2015 гг. проведена пошаговая регистрация фонового микросейсмического поля на детально размеченном полигоне, включающем зоны трещинных извержений 1975–1976 гг. и 2012–2013 гг., а также
частично постройку вулкана Плоский Толбачик. Построены глубинные разрезы, отражающие распределения относительных скоростей поперечных сейсмических волн в земной коре. Для большей достоверности интерпретации выявленных глубинных аномалий привлечены результаты независимых геолого-геофизических исследований. Выявленные низкоскоростные неоднородности обнаруживают тесную связь
с проявлениями современного вулканизма. Показано, что питающая система Толбачинского Дола пространственно неоднородна и объединяет субвертикальные и латеральные магмоводы, близкорасположенные подводящие каналы и малоглубинные магматические камеры. Обнаружена долгоживущая локальная транскоровая зона магмопроводимости, и выявлены закономерности в глубинном строении питающих систем трещинных извержений. Конфигурация выявленных субвертикальных магмоводов допускает возможность подъема базальтов к поверхности разными путями, что объясняет, в частности, контрастный состав магм в ходе единого извержения. Таким образом, по инструментальным данным показано, что магматическая питающая система олбачинского Дола имеет ряд особенностей и является значительно более сложной, чем в настоящее время принято считать для полей ареального вулканизма.

With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a step-by-step recording of the background microseismic noise in 2010–2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975–1976 and 2012–2013 and, partly, the edifice of thePloskii (flat) Tolbachik volcano. The depth sections ref lecting the distributions of the relative velocities of seismic waves in the Earth’s crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipe-shaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A long-lived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.
Ладыгин В.М., Фролова Ю.В., Спиридонов Э.М. О явлении аномально низких значений скоростей продольных волн современных базальтоидов // Вестник КРАУНЦ. Серия: Науки о Земле. 2018. Вып. 37. № 1. С. 20-31.    Аннотация
Особенностью голоценовых эффузивных пород основного-среднего состава являются аномально низкие величины скоростей продольных волн, характерные даже для плотных разностей. Для объяснения данного явления проведена серия экспериментов по насыщению образцов люминофором, с последующим изучением структуры порового-трещинного пространства на флуоресцентном микроскопе. Установлено, что основной причиной низких скоростей Р-волн является сеть тончайших микротрещин, которые возникают в эффузивных породах в процессе остывания и кристаллизации магматического расплава.

The paper shows that the abnormally low values of longitudinal wave velocities, typical even for dense differences, are an important feature of Holocene effusive rocks of medium-basic composition. In order to explain this phenomenon, a series of experiments was conducted to saturate the samples with a phosphor followed by a study of the structure of the pore-fractured space on a fluorescent microscope. The experiments showed that low P-wave velocities are caused by the network of the finest microcracks formed in the rock during cooling and crystallization of the magmatic melt.
Маневич А.Г., Гирина О.А., Мельников Д.В., Нуждаев А.А. Активность вулканов Камчатки в 2017 г. по данным KVERT // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 29-30 марта 2018 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 8-11.
Мельников Д.В., Гирина О.А., Маневич А.Г. Кратерное озеро в Активной воронке Мутновского вулкана, Камчатка // Вестник КРАУНЦ. Серия: Науки о Земле. 2018. Вып. 39. № 3. С. 5-8. doi: 10.31431/1816-5524-2018-3-39-5-8.
Мельников Д.В., Жижин М.Н., Трифонов Г.М., Пойда А.А. Динамика извержения вулкана Сноу (о. Чирпой, Курильские острова) в 2012–2017 гг.: результаты применения алгоритма VIIRS Nightfire // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 3. С. 69-79. doi: 10.21046/2070-7401-2018-15-3-69-79.    Аннотация
В статье представлены результаты успешного применения спутниковых данных VIIRS для мониторинга и восстановления истории извержения вулкана Сноу (о. Чирпой, Курильские острова) в 2012–2017 гг. Поставленные задачи решались с использованием алгоритма Nightfire. Он существенно отличается от существующих аналогичных систем за счёт одновременного использования множества диапазонов инфракрасного спектра (от близкого до дальнего) совместно с данными видимого спектра, в то время как большинство алгоритмов (например, MODVOLC и MIROVA) используют один или два диапазона из средней и дальней частей инфракрасного спектра. Проведённые исследования показали, что для извержения вулкана Сноу максимальная мощность теплового излучения (МВт) приходится на период с ноября 2012 по январь 2013 г. В этот период произошло излияние первой, наиболее объёмной порции лавового потока. Также выделяются ещё четыре хорошо выраженных периода: сентябрь – октябрь 2013 г.; март – июнь 2014 г.; август – ноябрь 2014 г.; апрель – июнь 2015 г. Они соответствуют импульсам излияния свежих порций лавы. Однако мощность этих лавовых потоков была меньше по сравнению с первым периодом.

Here we present the results of the successful application of VIIRS satellite data for monitoring and reconstruction of the eruption history of Snow volcano (Chirpoi Island, Kuriles) in 2012–2017. We used Nightfire algorithm to accomplish our tasks. This algorithm differs significantly from the other similar systems due to simultaneous usage of numerous diapasons of the infrared spectra (from near to long ranges) together with the data of the visible spectra, while most of the other algorithms (for example, MODVOLC and MIROVA) use one or two diapasons from the middle or long parts of the infrared spectra. Our research shows that the maximal thermal radiation power (MW) was observed from November 2012 to January 2013. During this period, first and most voluminous portion of lava flow was produced. There are four more well-distinguished periods of this eruption: September – October 2013; March – June 2014; August – November 2014; April – June 2015. All of them correspond to the impulses of the fresh lava eruptions, although the thickness of these lava flows is smaller compared to the first period.
http://jr.rse.cosmos.ru/article.aspx?id=1816&lang=eng [связанный ресурс]
Мельников Д.В., Маневич А.Г., Гирина О.А. Динамика извержения вулкана Алаид в 2012 и 2015-2016 гг. по данным методов дистанционного зондирования // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 29-30 марта 2018 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 68-71.
Романова И.М., Гирина О.А. Информационные технологии для анализа данных о вулканах Камчатки и Курил // Вестник КРАУНЦ. Серия: Науки о Земле. 2018. Вып. 39. № 3. С. 42-53. doi: 10.31431/1816-5524-2018-3-39-42-53.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru