Main BibliographyПо названиям
 
 Bibliography
Volcano:

 
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2117
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 2
2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory (2014)
Neal C.A., Herrick J.A., Girina O.A., Chibisova M.V., Rybin A.V., McGimsey R.G., Dixon J. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory. 2014. 76 p.    Annotation
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
2015-2016 Activity of Kamchatkan and Northern Kuriles Volcanoes (Russia) and Danger to Aviation (2016)
Gordeev E.I., Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A. 2015-2016 Activity of Kamchatkan and Northern Kuriles Volcanoes (Russia) and Danger to Aviation // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP 2016). Fairbanks, Alaska: UAF. 2016. P. 93-94.
2016-2017 explosive eruptions of Kamchatka volcanoes based on KVERT data (2018)
Manevich A.G., Girina O.A., Melnikov D.V., Nuzhdaev A.A. 2016-2017 explosive eruptions of Kamchatka volcanoes based on KVERT data // JKASP-2018. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018.
 3
300 лет жизни камчатских вулканов: Молодой Шивелуч (анализ динамики и последствий эруптивной активности в XVII-XX вв.). Часть I. 1650-1964 гг. (2003)
Мелекесцев И.В., Двигало В.Н., Кирсанова Т.П., Пономарева В.В., Певзнер М.М. 300 лет жизни камчатских вулканов: Молодой Шивелуч (анализ динамики и последствий эруптивной активности в XVII-XX вв.). Часть I. 1650-1964 гг. // Вулканология и сейсмология. 2003. № 5. С. 3-19.    Annotation
В первой из серии статей "300 лет жизни камчатских вулканов" рассмотрена и проанализирована 350-летняя история эруптивной активности вулкана Молодой Шивелуч - самого северного из действующих вулканических аппаратов на Камчатке, реконструированная на основе исторических документов и сведений, результатов геолого-вулканологических исследований и тефрохронологического датирования с использованием 14С метода. Установлены типы, параметры, геолого-геоморфологический эффект его извержений, их воздействие на окружающую среду, оценены объем и вес изверженных и перемещенных пород, продуктивность вулкана. С 1964 г. размеры возникших вулканических форм, динамика их роста и разрушения, объем изверженных пород определялись с помощью методов фотограмметрии. Часть I. 1650-1964 гг.

The present paper, the first in the serives "The 300 Years of Kamchatka Volcanoes", examines the 350-year eruptive history of Young Shiveluch Volcano, which is the northernmost of the active volcanic edifices in Kamchatka; the history was reconstructed from historical documents and evidence, results of geological volcanological research and tephrochronologic dating using the 14C method. The results include the types, parameters, geologic-geomorphologic effect of the volcano's eruptions, environmental impact, estimated volume and weight of erupted and displaced material, the volcano's discharge rate. Since 1964 the dimensions of the new volcanic forms, the dynamics of their growth and decay, and the volume of ejecta were found using photogrammetric techniques. Part I. 1650-1964.
300 лет жизни камчатских вулканов: Молодой Шивелуч (анализ динамики и последствий эруптивной активности в XVII-XX вв.). Часть II. 1965-2000 гг. (2004)
Мелекесцев И.В., Двигало В.Н., Кирсанова Т.П., Пономарева В.В., Певзнер М.М. 300 лет жизни камчатских вулканов: Молодой Шивелуч (анализ динамики и последствий эруптивной активности в XVII-XX вв.). Часть II. 1965-2000 гг. // Вулканология и сейсмология. 2004. № 1. С. 5-24.    Annotation
В первой из серии статей "300 лет жизни камчатских вулканов" рассмотрена и проанализирована 350-летняя история эруптивной активности вулкана Молодой Шивелуч - самого северного из действующих вулканических аппаратов на Камчатке, реконструированная на основе исторических документов и сведений, результатов геолого-вулканологических исследований и тефрохронологического датирования с использованием 14С метода. Установлены типы, параметры, геолого-геоморфологический эффект его извержений, их воздействие на окружающую среду, оценены объем, вес изверженных и перемещенных пород, продуктивность вулкана. С 1964 г. размеры возникших вулканических форм, динамика их роста и разрушения, объем изверженных пород определялись с помощью методов фотограмметрии. Часть II. 1965-2000 гг.

The first paper in the series “The 300 Years of Kamchatka Volcanoes” has examined the 350-year eruptive history of Young Shiveluch Volcano, which is the northernmost of the active volcanic edifices in Kamchatka: the history was reconstructed from historical documents and evidences, results of geological volcanological research and tephrochronologic dating as well as the 14C method. The results include the types, parameters, geologic-geomorphologic effect of the volcano’s eruptions, environmental impact, estimated volume and weight of erupted and redeposited material, the volcano’s discharge rate. Since 1964 the sizes of the new volcanic forms, the dynamics of their growth and destruction, and the volume of ejecta were calculated using photogram-metric techniques. Part II. 1965-2000.
 4
400 years of climatic change in Kamchatka Peninsula, Russia: paleoglaciologic, tree-ring and ice-core evidance (2002)
Muravyev Y.D., Shiraiwa T. 400 years of climatic change in Kamchatka Peninsula, Russia: paleoglaciologic, tree-ring and ice-core evidance // Proceedings International Workshop. Matsuyama, Japan, 2002. 2002. P. 76-91.
 7
75 лет со дня рождения А.Н. Заварицкого (1959)
Горшков Г.С., Соболев В.С. 75 лет со дня рождения А.Н. Заварицкого // Минералогический сборник. 1959. № 13.
 A
A 210Pb–226Ra–230Th–238U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka (2006)
Turner S.P., Sims K.W.W., Reagan M.K. A 210Pb–226Ra–230Th–238U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka // Geochimica et Cosmochimica Acta. 2006. V. 70. № 18, Su. P. A661 doi: 10.1016/j.gca.2006.06.1234.    Annotation
Klyuchevskoy is one of the most active volcanoes on Earth, erupting lavas at a rate of ∼1 m3/s, equivalent to a 50 km length of mid-ocean ridge. Bezymianny is located 20 km south of the summit vent of Klyuchevskoy and has been erupting silicic andesites since its spectacular avalanche eruption in 1956. Major and trace element concentrations and long-lived radiogenic isotope data suggest that basalts and basaltic andesites from Klyuchevskoy and andesites from Bezymianny were derived by different degrees of partial melting of nearly identical mantle sources. Lavas with higher SiO2 concentrations represent the differentiation products of lower degrees of melting after the mantle was fluxed with a fluid derived almost entirely from subducted altered basaltic crust with little or no sediment contribution. The higher SiO2 concentrations for lavas derived from smaller degree melts suggest that they underwent more fractionation because of the loss of their higher water contents. High Th isotope compositions for all lavas from both volcanoes suggest that a significant time transpired between U addition by a slab-fluid and melting. If the excess 226Ra in the lavas is from the slab-fluid, then long term multistage fluxing before melting is required to maintain these 226Ra excesses. An alternative model attributes the excess Ra to melting caused by upwelling mantle in association with rifting of the central Kamchatka depression. The greater Ra excess for Klyuchevskoi’s basaltic andesites compared to its basalts is consistent with generation of the Ra excesses during decompression melting, and a less than few thousand year time frame of differentiation after melting. The lower Ra excesses for Bezymianny’s andesites compared to the more mafic lavas suggest a time frame of fractionation that is longer than this by several thousand years. When time since eruption is accounted for, all samples have (210Pb/226Ra) within 2σ analytical error of one, suggesting that significant long-term gas fluxing of 222Rn into or out of both magma systems has not occurred.
A 210Pb–226Ra–230Th–238U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka (2007)
Turner Simon, Sims Kenneth W.W., Reagan Mark, Cook Craig A 210Pb–226Ra–230Th–238U study of Klyuchevskoy and Bezymianny volcanoes, Kamchatka // Geochimica et Cosmochimica Acta. 2007. V. 71. № 19. P. 4771 - 4785. doi: 10.1016/j.gca.2007.08.006.    Annotation
Lavas from Klyuchevskoy and Bezymianny volcanoes, Kamchatka, appear to show a link between the extent of partial melting in their mantle source region and the subsequent degree of fractionation suffered by the magmas during passage through the crust. This fractionation may have occurred on timescales significantly less than 1000 years if observed 226Ra excesses largely reflect variable residual porosity in the source melting region. Unlike most arc lavas, those with the highest MgO contents and Ba/Th ratios have the lowest 226Ra excess. Forward models suggest that those portions of the source which had undergone the greatest addition of U by fluids from the subducting plate also underwent the greatest extents of partial melting at the highest residual porosity. At Kluchevskoy, a change from eruption of high-MgO to high-Al2O3 basaltic andesites around 1945 is reflected in an increase in size of 226Ra excess which seems to require a simultaneous decrease in residual porosity and suggests a rapid changes in the melting regime. The eruption of andesites at Bezyminanny, simultaneous with the eruption of basaltic andesites at Klyuchevskoy, further suggests that different degree melts produced at differing residual porosity can be formed and extracted from the melt region at the same time. Thus, the melting processes beneath Klyuchevskoy and Bezyminanny are demonstrably complex. They have clearly been influenced by both fluid addition from the subducting plate and extension and decompression beneath the Central Kamchatka Depression. Finally, the 210Pb data are, with one or two exceptions, in equilibrium with 226Ra, suggesting that there was restricted relative magma-gas movement in this highly productive magmatic system.
A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism (2016)
Gavrilenko M., Herzberg C., Vidito C., Carr M., Tenner T., Ozerov A. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism // Journal of Petrology. 2016. V. 57. № 9. P. 1811-1832. doi:10.1093/petrology/egw062.    Annotation
High-precision electron microprobe analyses were obtained on olivine grains from Klyuchevskoy, Shiveluch and Gorely volcanoes in the Kamchatka Arc; Irazu, Platanar and Barva volcanoes of the Central American Arc; and mid-ocean ridge basalt (MORB) from the Siqueiros Transform. Calcium contents of these subduction zone olivines are lower than those for olivines from modern MORB, Archean komatiite and Hawaii. A role for magmatic H2O is likely for subduction zone olivines, and we have explored the suggestion of earlier workers that it has affected the partitioning of CaO between olivine and silicate melt. We provide a provisional calibration of DCaO Ol/L as a function of magmatic MgO and H2O, based on nominally anhydrous experiments and minimally degassed H2O contents of olivine-hosted melt inclusions. Application of our geohygrometer typically yields 3–4 wt % magmatic H2O at the Kamchatka and Central American arcs for olivines having 1000 ppm Ca, which agrees with H2O maxima from melt inclusion studies; Cerro Negro and Shiveluch volcanoes are exceptions, with about 6% H2O. High-precision electron microprobe analyses with 10–20 lm spatial resolution on some olivine grains from Klyuchevskoy and Shiveluch show a decrease in Ca content from the core centers to the rim contacts, and a sharp increase in Ca in olivine rims. We suggest that the zoning of Ca in olivine from subduction zone lavas may provide the first petrological record of temporal changes that occur during hydration of the mantle wedge and dehydration during ascent, and we predict olivine H2O contents that can be tested by secondary ionization mass spectrometry analysis.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru