Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1778
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 A
Ages and stages of development of the Kurile - Kamchatka active volcanoes (1983)
Melekestsev I.V. Ages and stages of development of the Kurile - Kamchatka active volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 230-231.
Ages of active volcanoes in the Kuril-Kamchatka region (1995)
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskiy L.D., Litasova S.N. Ages of active volcanoes in the Kuril-Kamchatka region // Volcanology and Seismology. 1995. V. 16. № 4-5. P. 341-369.    Аннотация
The births (ages) of most of the active volcanoes, calderas, and large craters produced by caldera-resembling eruptions (subcaldera craters) were dated as a result of geological, geomorphological, tephrochronological, and isotopic studies. The dated active volcanoes were found to be fairly young formations, the age of the oldest being 40-50 thousand years. Most of the presently highly active volcanoes had been born at the very end of the late Pleistocene or during the Holocene. Carbon-14 ages were determined for the majority of the Holocene volcanoes. The periods of time when Holocene volcanoes had been synchronously active were 7500-7800 and 1300-1800 years ago. -from Journal summary

По результатам геолого-геоморфологических, тефрохронологических и изотопно-геохронологических исследований на базе более 600 14С-дат определено время возникновения (возраст) большинства действующих вулканов, кальдер и кратеров субкальдерных извержений Курило-Камчатского региона. Установлено, что действующие вулканы являются достаточно молодыми образованиями с максимальным возрастом 40-50 тыс. лет. Подавляющее большинство наиболее активных в настоящее время вулканов начало формироваться в самом конце позднего плейстоцена и в голоцене. Для большинства вулканов, возникших в голоцене, определен их 14С-возраст. Установлено, что все полигенные стратовулканы Камчатки в голоцене возникали только в пределах ее Восточной вулканической зоны. Определен 14С-возраст большинства позднеплейстоценовых кальдер, которые сформировались Преимущественно к интервале времени 30-40 тыс. лет назад. Датированы все голоценовые кальдеры и ряд кратеров субкальдерных извержений. Выявлены периоды синхронной активизации действующих вулканов в голоцене в интервале времени 7500-7800 и 1300-1800 лет назад.
http://repo.kscnet.ru/926/ [связанный ресурс]
Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes (2013)
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.    Аннотация
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.
An eruption of the Veer cone as a volcanic event during the increase of volcanic activity in Kamchatka at the beginning of the Christian Era (2010)
Dirksen O.V., Bazanova L.I. An eruption of the Veer cone as a volcanic event during the increase of volcanic activity in Kamchatka at the beginning of the Christian Era // Journal of Volcanology and Seismology. 2010. V. 4. № 6. P. 378-384. doi: 10.1134/S0742046310060023.    Аннотация
Tephrochronologic studies conducted in the Levaya Avacha River valley helped determine the true age of the Veer cinder cone, which formed approximately in 470 AD (1600 14C BP). These data refute the existing idea that it was generated in 1856. The monogenetic Veer cone should be cancelled from the catalogs of historical eruptions and active volcanoes in Kamchatka. The eruption of this cone was a reflection of the all-Kamchatkan increase in the activity of endogenous processes that occurred in 0–650 AD.

Тефрохронологические исследования, проведенные в долине р. Левая Авача, позволили установить истинный возраст шлакового конуса Веер, который образовался примерно в 470 г. н.э. (1600 14 л.н.). Эти данные опровергают существовавшие до настоящего времени представления о дате его формирования в 1856 г. Моногенный конус Веер необходимо исключить из каталогов исторических извержений и действующих вулканов Камчатки. Извержение конуса явилось проявлением общекамчатской активизации эндогенных процессов, происходившей в 0-650 гг. н.э.
http://repo.kscnet.ru/477/ [связанный ресурс]
Another “Great Tolbachik” Eruption? (2013)
Edwards Ben, Belousov Alexander, Belousova Marina, Volynets Anna, Melnikov Dmitry, Chirkov Sergey, Senyukov Sergey, Gordeev Evgenii, Muraviev Yaroslav, Izbekov Pavel, Demianchuk Yury Another “Great Tolbachik” Eruption? // Eos, Transactions American Geophysical Union. 2013. V. 94. № 21. P. 189-191. doi:10.1002/2013EO210002.    Аннотация
On 27 November 2012 at 1715 local time, a focused swarm of earthquakes was interpreted as the start of a new ongoing eruption on the south flank (Tolbachinsky Dol) of Plosky Tolbachik volcano in east central Kamchatka, Russia (Figure 1a) [Samoylenko et al., 2012]. Visual observations on 29 November showed ash shooting from two fractures as well as long, rapidly moving lava flows. Although the initial ash clouds reached 6 kilometers in height, subsequent ashfall has been limited to the area around the main vents, and no permanent settlements are in danger from advancing lava flows (the closest settlements are about 40 kilometers from the volcano). Including this eruption, six different volcanoes are presently active in Kamchatka.
Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding (2014)
Koulakov Ivan, Jaxybulatov Kayrly, Shapiro Nikolay M., Abkadyrov Ilyas, Deev Evgeny, Jakovlev Andrey, Kuznetsov Pavel, Gordeev Evgeny, Chebrov Viktor Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding // Journal of Volcanology and Geothermal Research. 2014. V. 285. P. 36 - 46. doi: 10.1016/j.jvolgeores.2014.08.012.    Аннотация
Avacha group includes two active and potentially dangerous volcanoes, Avachinsky and Koryaksky, located close to Petropavlovsk-Kamchatsky, the main city of Kamchatka. We present the results of two independent seismic studies of shallow crustal structures beneath the Avacha group based on passive and active source observations. The first study is based on the analysis of continuous recording by 11 seismic stations installed over the Avacha group in 2012 and 7 permanent stations in the same region. We present a series of 2D Rayleigh-wave group velocity maps based on correlation of ambient noise, that were then converted into 3D distribution of shear wave velocity. The second work was based on the reprocessing of an active source deep seismic sounding profile across the Avachinsky volcano that was shot in 1982–1984. We made the analysis of travel times of refracted waves using a 2D tomography inversion. The resulting seismic models appear to be consistent with each other and show clear low-velocity zone to the SW of the Avachinsky volcano and high velocity structures to NE. These observations also agree with the existing gravity and magnetotelluric measurements. Based on the obtained seismic models we identify two large buried calderas and large lava flows that are thought to be related to a series of large eruption episodes of Avachinsky occurred within the last 30,000 years.
 B
Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits (1986)
Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A. Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits // SEAN Bulletin. 1986. № 4. P. 15-20.
Bezymianny (Kamchatka)/ Lava extrusion, pyroclastic flow (1986)
Firstov P.P., Maksimov A.P., Girina O.A. Bezymianny (Kamchatka)/ Lava extrusion, pyroclastic flow // SEAN Bulletin. 1986. № 7. P. 12
Bezymianny eruption of August 02, 1989 (1993)
Girina O.A., Bogoyavlenskaya G.E., Demyanchuk Yu.V. Bezymianny eruption of August 02, 1989 // Volcanology and Seismology. 1993. V. 15. № 2. P. 135-144.
Bezymianny volcano: 50 years of activity (2006)
Bogoyavlenskaya G.E., Girina O.A. Bezymianny volcano: 50 years of activity // Abstracts. 5rd Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP-5). 2006. P. 129 doi: P 601.
 C
Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment (2002)
Izbekov Pavel E., Eichelberger John C., Patino Lina C., Vogel Thomas A., Ivanov Boris V. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment // Geology. 2002. V. 30. № 9. P. 799-802.    Аннотация
Calcic cores in plagioclase of Karymsky andesite of the 1996–2000 eruptive cycle texturally and compositionally (both trace and major elements) mimic the plagioclase phenocrysts of basalt erupted 6 km away at the onset of the cycle. These observations support the view that simultaneous eruption of andesite and basalt at Karymsky in the beginning of the cycle represents an example of replenishment and eruption triggering of an andesitic reservoir. Homogeneity of andesitic output occurred within two months. This suggests to us that blending of injected basalt into reservoir magma was thorough and rapid.
http://www.kscnet.ru/ivs/bibl/vulk/karim/ipe02.pdf [связанный ресурс]
Catalogue of the Active Volcanoes of the World, Including Solfatara Fields: Kamchatka and continental areas of Asia. Part 8 (1959)
Vlodavetz V.I., Piip B.I. Catalogue of the Active Volcanoes of the World, Including Solfatara Fields: Kamchatka and continental areas of Asia. Part 8. Napoli: International Volcanological Association. 1959. 110 p.
Catalogue of the active volcanoes of the world including solfatara fields. Part VII - Kurile Islands (1958)
Gorshkov G.S. Catalogue of the active volcanoes of the world including solfatara fields. Part VII - Kurile Islands / Ed. Signore Francesco Napoli, Italy: the International Volcanological Association. 1958. 100 p.
Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes (1985)
Bogoyavlenskaya G.E., Braitseva O.A., Melekestsev I.V., Kirianov V.Yu., Dan Miller C. Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes // Journal of Geodynamics. 1985. V. 3. № 3-4. P. 189-218. doi:10.1016/0264-3707(85)90035-3.    Аннотация
This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955–1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (10^17−10^18 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less.
The heat energy of all three eruptions is comparable: 1.3 × 10^18, 3.8−4.8 × 10^18 and 1 × 10^17 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively.
Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka (1991)
Taran Yu.A., Rozhkov A.M., Serafimova E.K., Esikov A.D. Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 1991. V. 46. № 3–4. P. 255 - 263. doi: 10.1016/0377-0273(91)90087-G.    Аннотация
Gas samples have been collected at the place of magma effusion during the 1988 flank eruption of Klyuchevskoy, for the first time in the course of studies at this volcano. The high-temperature gases (1000–1100°C) are rich in water and halogens but depleted in sulphur. Their molar composition is close to chemical equilibrium at the collection temperature, while their oxidation state corresponds to redox conditions between FMO and NNO buffers. The isotopic composition of the water (δD = −71 to −44‰; δ18O = +6.3 to +8.4‰, versus SMOW) plots within the field of “primary magmatic” waters. The isotopic composition of H2 (δD = −187‰ to −160‰) is consistent with isotopic equilibrium between H2 and H2O in the conditions of emission. Both the chemistry of the gases and the low δ13C of carbon dioxide (−11.6‰, PDB) suggest extensive magma outgassing occurred during the course of the eruption.
Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: Evidence from inclusions in minerals (2012)
Tolstykh M.L., Naumov V.B., Gavrilenko M.G., Ozerov A.Yu., Kononkova N.N. Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: Evidence from inclusions in minerals // Geochemistry International. 2012. V. 50. № 6. P. 522-550. doi:10.1134/S0016702912060079.
Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs (2015)
Agrinier Pierre, Shilobreeva Svetlana, Bardoux Gerard, Michel Agnes, Maximov Alexandr, Kalatcheva Elena, Ryabinin Gennady, Bonifacie Magali Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs // Geophysical Research Abstracts. EGU2015-3174. Vienna, Austria: EGU General Assembly 2015. 2015. V. 17. P. 11034
Chronology of Bezymianny Volcano activity, 1956-2010 (2013)
Girina O.A. Chronology of Bezymianny Volcano activity, 1956-2010 // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 22-41. doi: 10.1016/j.jvolgeores.2013.05.002.    Аннотация
Bezymianny Volcano is one of the most active volcanoes in the world. In 1955, for the first time in history, Bezymianny started to erupt and after six months produced a catastrophic eruption with a total volume of eruptive products of more than 3 km3. Following explosive eruption, a lava dome began to grow in the resulting caldera. Lava dome growth continued intermittently for the next 57 years and continues today. During this extended period of lava dome growth, 44 Vulcanian-type strong explosive eruptions occurred between 1965 and 2012. This paper presents a summary of activity at Bezymianny Volcano from 1956 to 2010 with a focus on descriptive details for each event.
Chronology, evolution and morphology of plateau basalt eruptive centers in Avacha River Area, Kamchatka, Russia (1999)
Dirksen O.V., Melekestsev I.V. Chronology, evolution and morphology of plateau basalt eruptive centers in Avacha River Area, Kamchatka, Russia // Volcanology and Seismology. 1999. V. 21. № 1. P. 1-27.    Аннотация
Nineteen Holocene eruptive centers (cinder cones with lava flows and maars) were located and described in the Avacha horst and anticline zone west of the East Kamchatka volcanic area. A tephrochronological study and the carbon-14 dating of soil and plant remains ranked the eruptive centers into three age groups: 11 000-7700, 3000-2500, and 1200-600 carbon-14 years B. P. The eruptive centers of these groups are believed to have been operating roughly synchronously with the periods of active magma injection in the East Kamchatka volcanic area. Eruptive histories were reconstructed for some of the volcanic centers. The structural and tectonic settings, geographical positions, and elevations of the centers were analyzed. The volume (1.1 km3) and weight (1.8 X 10^9 metric tons) of the erupted rocks were evaluated. The productivity of the plateau basalt volcanism was found to be 10-100 times lower than the plateau basalt productivity in the area of grabens and synclines, possibly, because of the more shallow basement in the horsts and because of the fact that the compression of the crust under uplifting conditions hampered the magma rise toward the surface. Most of the lavas and pyroclastics are basalts of the medium-potassic series, some having medium (54-62) and some elevated (65-70) Kmg values.
http://repo.kscnet.ru/923/ [связанный ресурс]
Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka (2007)
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. 2007. V. 255. № 1-2. P. 53-69. doi: 10.1016/j.epsl.2006.12.005.    Аннотация
New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru