Group by:  
Jump to:
Records: 2355
Khubaeva Olga, Bergal-Kuvikas Olga, Sidorov M.D. Identification of Ruptures and their Interaction with Hydrothermal–Magmatic Systems on Northern Paramushir Isl. (Kuril Islands, Russia): 3D Modeling of Tectonic Fragmentation // Geotecton. 2020. № 54. P. 785-796. doi: 10.31857/S0016853X20060077.
Kopylova G.N., Boldina S.V. Groundwater Pressure Changes Due to Magmatic Activation: Case Study of The E-1 Well, Kamchatka Peninsula, Russia // Geothermal Volcanology Workshop 2020. September 03-09, 2020, Petropavlovsk-Kamchatsky, Institute of Volcanology and Seismology. 2020.
Korolev S.P., Urmanov I.P., Kamaev A., Girina O.A. Parametric Methods and Algorithms of Volcano Image Processing / Software Engineering Perspectives in Intelligent Systems. Advances in Intelligent Systems and Computing. Cham: Springer. 2020. Vol. 1295. P. 253-263.    Annotation
A key problem of any video volcano surveillance network is an inconsistent quality and information value of the images obtained. To timely analyze the incoming data, they should be pre-filtered. Additionally, due to the continuous network operation and low shooting intervals, an operative visual analysis of the shots stream is quite difficult and requires the application of various computer algorithms. The article considers the parametric algorithms of image analysis developed by the authors for processing the shots of the volcanoes of Kamchatka. They allow automatically filtering the image flow generated by the surveillance network, highlighting those significant shots that will be further analyzed by volcanologists. A retrospective processing of the full image archive with the methods suggested helps to get a data set, labeled with different classes, for future neural network training.
Melnik O., Lyakhovsky V., Shapiro Nikolay M., Galina N., Bergal-Kuvikas Olga Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas // Nature Communication. 2020. Vol. 11. № 3918. doi: 10.1038/s41467-020-17759-4.    Annotation
Deep long-period (DLP) earthquakes observed beneath active volcanoes are sometimes considered as precursors to eruptions. Their origin remains, however, unclear. Here, we present a possible DLP generating mechanism related to the rapid growth of gas bubbles in response to the slow decompression of over-saturated magma. For certain values of the gas and bubble content, the elastic deformation of surrounding rocks forced by the expanding bubbly magma can be fast enough to generate seismic waves. We show that amplitudes and frequencies of DLP earthquakes observed beneath the Klyuchevskoy volcano (Kamchatka, Russia) can be predicted by our model when considering pressure changes of ~107 Pa in a volume of ~103–104 m3 and realistic magma compositions. Our results show importance of the deep degassing in the generation of volcanic seismicity and suggest that the DLP swarms beneath active volcanoes might be related to the pulses of volatile-rich basaltic magmas rising from the mantle.
Ozerov A.Yu., Girina O.A., Zharinov N.A., Belousov A.B., Demyanchuk Yu.V. Eruptions in the Northern Group of Volcanoes, in Kamchatka, during the Early 21st Century // Journal of Volcanology and Seismology. 2020. Vol. 14. P. 1-17.    Annotation
The early 21st century saw increased eruption activity of major volcanoes in the Northern Group of Kamchatka, namely, Sheveluch, Klyuchevskoy, Bezymianny, and the Tolbachik Fissure Zone. The growth of an extrusive dome on Sheveluch andesitic volcano has occurred, with the dome reaching a height of 600 m after 38 years of nearly uninterrupted eruption activity. An 8-year period of relative quiet was followed by ten summit eruptions and two lateral vent openings on the Klyuchevskoy basaltic volcano. Explosive–effusive eruptions were observed nearly every year on the Bezymianny andesitic volcano. A 36-year quiet period gave way to a new eruption in the Tolbachik regional fissure zone.
Walter Thomas, Belousov Alexander, Belousova Marina, Kotenko Tatiana, Auer Andreas The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations // Remote Sensing. 2020. Vol. 12. № 12(1961). doi: 10.3390/rs12121961.
Арсанова Г.И. Вулкан как глубинная геологическая структура (механизмы возникновения и стока магм) // The scientific heritage. 2020. Т. 1. № 50. С. 16-24.    Annotation
Впервые объясняются причины рождения вулканов в недрах планеты и механизм выброса магмы на поверхность. Итоговый вывод получен как результат интеграции знаний нескольких наук. Их синтез позволил определить ВУЛКАН как самоорганизующуюся пространственно-временную вихревую диссипативную структуру, форма которой создается и переносится в виде волн, а по нити (керну) структуры идет сток магмы. Такие структуры сами рождаются на подходящей хаотической среде; соответствующая среда возникает в результате высокого давления, ломающего структуры молекул, и этим создающего множество различных хаотично движущихся частиц. Необходимое давление, по-видимому, достигается на уровне астеносферы, где и локализуются «корни» вулканов.

For the first time the causes of the birth of volcanoes in the depths of the planet and the mechanism of magma ejection to the surface are explained. The final conclusion was obtained as a result of the integration of knowledge of several sciences. Their synthesis allowed to define VOLCANO as a self-organizing space-time vortex dissipative structure, the form of which is created and carried in the form of waves, and through the thread (core) of the structure is the drain of magma. Such structures are itself born in a suitable chaotic environment; appropriate environment arises as a consequence of high pressure, which breaks down the structures of molecules and this creates a lot of different moving particles. The pressure necessary for this, apparently, is reached at the asthenosphere level, where the "roots" of volcanoes are localized.
Арсанова Г.И. Сверхкритическое состояние воды как причина вулканических явлений // The scientific heritage. 2020. Т. 2. № 45. С. 7-17.    Annotation
Особенности динамики вулканических извержений впервые объясняются как следствие свойств высокотемпературных фаз воды и их переходов. Приведены некоторые свойства воды в сверхкритическом (флюидном) состоянии. Последние определяют характер взаимоотношения воды и расплава в вулканическом процессе, что в свою очередь, объясняет взрывы разной мощности, стремительность палящих туч, перенос газов к подножью вулканов, прорывы и оползни на склонах, возникновение пеплов, пемз, псевдоожиженной массы, а также возможно игнимбритов и вулканических стекол. Показана невозможность проникновения холодных вод в действующий вулканический канал, а также их высокого нагрева (до смены фазы) в условиях коры.

Features of the dynamics of volcanic eruptions for the first time are explained as a consequence of the properties of high-temperature phases of water and their transitions. Some properties of water in supercritical (fluid) condition are given. The latter determine the nature of the relationship between water and melt in the volcanic process, which in turn explains the explosions of different power, the rapidity of scorching clouds, the transfer of gases to the foot of volcanoes, breakouts and landslides on the slopes, the occurrence of ash, pumice, pseudoliquefied mass, as well as possibly ignimbrits and volcanic glass. It shows the impossibility of penetration of cold water into the active volcanic channel, as well as their high (before the change of phase) heating in the conditions of the crust.
Белоусов А.Б., Белоусова М.Г. Лавовый дрейф вулканолога Попкова // Природа. 2020. № 1. С. 50-59. doi: 10.7868/S0032874X20010056.
Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Петрова В.В., Пилипенко О.В., Рашидов В.А., Трусов А.А. Комплексные геолого-геофизические исследования подводного вулканического массива Ратманова (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2020. Вып. 46. № 2. С. 55-71. doi: 10.31431/1816-5524-2020-2-46-55-71.    Annotation
Приведены результаты комплексных геолого-геофизических исследований подводного вулканического массива Ратманова, расположенного в Курильской островной дуге в 15 км к юго-востоку от о. Чиринкотан. На северо-западном склоне массива располагается небольшой подводный вулкан с относительной высотой 400–450 м, при драгировании которого были подняты андезиты и незначительное количество андезибазальтов. Получены новые данные о минеральном и химическом составах, а также структурных особенностях горных пород, слагающих массив. Высокие значения естественной остаточной намагниченности этих пород обусловлены большим содержанием псевдооднодоменных зерен титаномагнетита. Подножие массива перекрыто вулканогенно-осадочной толщей мощностью 400–800 м, а его образование, вероятнее всего, происходило в периоды глобальных геомагнитных возмущений. Максимальная эффективная намагниченность массива достигает 0.8 А/м. В вулканическом массиве выделены подводящие каналы, а в интервалах глубин 3.8–4.6 км и 6–7.1 км – периферические магматические очаги.

The article presents the results of integrated geologic-geophysical investigation of the Ratmanov submarine volcanic massif, located in the Kurile Island Arc, 15 km southeast of the Chirinkotan island. There is a small submarine volcano on the northwestern slope of the massif with a relative height of 400–450 m, dredging of which raised andesites and a small number of andesite basalts. New data have been obtained on the mineral and chemical compositions and structural features of the massif rock formation. High values of the natural remnant magnetization of dredged rocks are caused by the high content of pseudo-single-domain of titanomagnetite grains. The foot of the massif is overlain by a volcanic-sedimentary sequence 400–800 m thick, and its formation most probably took place during periods of global geomagnetic disturbances. The maximum effective magnetization of the massif reaches 0.8 A / m. In the deep of the massif, supply channels, as well as peripheral magma chambers in the depth intervals of 3.8–4.6 km and 6–7.1 km, are identified.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.