Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2577
 Г
Геохимия парогидротерм Кошелевского вулканического массива (Южная Камчатка) (2016)
Калачева Е.Г., Рычагов С.Н., Королева Г.П., Нуждаев А.А. Геохимия парогидротерм Кошелевского вулканического массива (Южная Камчатка) // Вулканология и сейсмология. 2016. № 3. С. 41-56. doi:10.7868/S0203030616030044.
   Annotation
Приведены новые данные по геохимии термальных вод Кошелевского вулканического массива на юге Камчатки. Рассмотрены условия формирования термальных вод, возможные варианты теплового и глубинного вещественного питания Кошелевской гидротермальной системы и предложена ее концептуальная модель.
Геохимия термальных вод и фумарольных газов о. Шиашкотан (Курильские острова) (2014)
Калачева Е.Г., Котенко Т.А., Котенко Л.В., Волошина Е.В. Геохимия термальных вод и фумарольных газов о. Шиашкотан (Курильские острова) // Вулканология и сейсмология. 2014. № 5. С. 12-26.
   Annotation
На основе геохимических исследований скорректированы представления об условиях формирования и разгрузки термальных вод о. Шиашкотан. Термальные источники, распространенные на острове, являются поверхностными проявлениями Северо-Шиашкотанской и Кунтоминтарской гидротермальных систем. Северо-Шиашкотанская гидротермальная система имеет классическую гидрохимическую зональность. Разгрузка Кунтоминтарской гидротермальной системы ограничена двумя термальными полями, расположенными в центральном и северо-восточном кратерах одноименного вулкана. Высокая температура газов вулкана Кунтоминтар на поверхности и повышенные прогностические отношения S/Cl, S/C, CO2/H2 в его составе свидетельствуют о возможной активизации его фумарольной деятельности.
Геохронология крупнейших эксплозивных извержений Камчатки в голоцене и их отражение в Гренландском ледниковом щите (1997)
Брайцева О.А., Сулержицкий Л.Д., Пономарева В.В., Мелекесцев И.В. Геохронология крупнейших эксплозивных извержений Камчатки в голоцене и их отражение в Гренландском ледниковом щите // Доклады АН СССР. 1997. Т. 352. № 4. С. 516-518.
Геоэлектрическая модель района Толбачинского извержения имени 50-летия ИВиС (2016)
Мороз Ю.Ф., Логинов В.А. Геоэлектрическая модель района Толбачинского извержения имени 50-летия ИВиС // Вулканология и сейсмология. 2016. № 6. С. 21-34. doi: 10.7868/S0203030616050059.
   Annotation
Рассмотрены методика и результаты магнитотеллурического зондирования в модификациях АМТЗ и МТЗ. Аудиомагнитотеллурическое зондирование (АМТЗ) было проведено впервые в районе современного извержения Толбачинского вулкана. Результаты анализа магнитотеллурических параметров свидетельствуют, что геоэлектрическую среду, в связи с региональным разломом, можно аппроксимировать в виде двумерно-неоднородной модели. В качестве основных для интерпретации приняты продольная и поперечная кривые зондирований. Совместный анализ этих кривых и псевдоразрезов фаз импеданса свидетельствуют о геоэлектрической неоднородности среды в районе прорыва магматических расплавов им. С.И. Набоко. По данным бимодальной инверсии кривых АМТЗ получен геоэлектрический разрез, содержащий проводящую неоднородность, связываемую с разломом, по которому флюиды поступают к дневной поверхности. Наряду с АМТЗ для изучения глубинной электропроводности использованы МТЗ в расширенном диапазоне, по которым выделяется коровая проводящая аномалия на глубинах 15–35 км. По данным АМТЗ, МТЗ и другой геолого-геофизической информации составлена концептуальная модель района, характеризующая возможную природу аномальных зон. Даны приближенные оценки пористости пород в разломной зоне, по которой магматические расплавы поступали в вышележащие толщи в районе прорыва им. С.И. Набоко.
Гетеротакситовые лавы и пемзы (к проблеме смешения магматических расплавов) (1979)
Волынец О.Н. Гетеротакситовые лавы и пемзы (к проблеме смешения магматических расплавов) / Проблемы глубинного магматизма: Сб. статей. М.: Наука. 1979. С. 181-197.
Гигантские обвалы на вулканах (1984)
Мелекесцев И.В., Брайцева О.А. Гигантские обвалы на вулканах // Вулканология и сейсмология. 1984. № 4. С. 14-23.
Гигантские обрушения на вулканах в XX-ом веке (1997)
Белоусов А.Б., Белоусова М.Г. Гигантские обрушения на вулканах в XX-ом веке // Природа. 1997. Т. 11. С. 70-81.
Гигантский эксплозивно-обвальный цирк и обломочная лавина на вулкане Бакенинг (Камчатка, Россия) (1998)
Мелекесцев И.В., Дирксен О.В., Гирина О.А. Гигантский эксплозивно-обвальный цирк и обломочная лавина на вулкане Бакенинг (Камчатка, Россия) // Вулканология и сейсмология. 1998. № 3. С. 12-24.
   Annotation
This study revealed that the giant cirque of Bakening Volcano had been produced by its eruption ca. 8000-8500 carbon-14 year ago. The eruption is supposed to have been heralded by a large earthquake (M > 7) resulting in the collapse and slide of the SE sector of the cone. The landslide unroofed the hydrothermal system and triggered an explosion which was followed by an ash-and-block pyroclastic flow. A rockslide avalanche rolled down into the valley of the Srednyaya Avacha River and travelled as far as 10-11 km along it. The avalanche deposited its debris material over an area of 18-20 km2 measuring 0.4-0.5 km3 in volume. These deposits dammed the river, produced two lakes (Bezymyannoe and Verkhneavacha), and gave birth to a large lahar which traveled along the valley much farther.
Гигантское извержение вулкана Шевелуч 12 ноября 1964 г. (предварительное сообщение) (1965)
Пийп Б.И., Мархинин Е.К. Гигантское извержение вулкана Шевелуч 12 ноября 1964 г. (предварительное сообщение) // Бюллетень вулканологических станций. 1965. № 39. С. 28-34.
Гигантское извержение сопки Безымянной (1957)
Горшков Г.С. Гигантское извержение сопки Безымянной // Тезисы докладов 11-ой Генеральной Ассамблеи МГГС. М.: АН СССР. 1957. С. 5-10.