Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2773
 2001
Рожков А.М., Фазлуллин С.М., Марков И.А., Шапарь В.Н. Газы гидротерм Карымского вулканического центра // Вулканология и сейсмология. 2001. № 6. С. 58-67.
   Аннотация
Проведены исследования газового состава и изотопного отношения гелия и 4He/20Ne гидротерм в пределах Карымского вулканического центра и характера их изменений в связи с активизацией тек-тоно-магматической обстановки в этом регионе, проявившейся в конце 1995 г. и в начале 1996 г. в виде серии сильных землетрясений, извержения Карымского вулкана и мощного подводного извержения, эпицентр которого располагался в Карымском озере. Опробованы как ранее существовавшие здесь источники Карымские и Академии Наук, так и вновь образовавшиеся гидротермы и фумарола в районе подводного извержения. Совместно в этим изучен состав растворенных газов оз. Карымское
Славина Л.Б., Гарагаш И.А., Горельчик В.И., Иванов Б.В., Белянкин Г.А. Скоростное строение и напряженно-деформированное состояние земной коры в районе Ключевской группы вулканов Камчатки // Вулканология и сейсмология. 2001. № 1. С. 49-59.
Толстых М.Л., Наумов В.Б., Озеров А.Ю., Кононкова Н.Н. Состав магм извержения 1996 г. Карымского вулканического центра (Камчатка) по данным изучения расплавных включений // Геохимия. 2001. № 5. С. 498–509
Федотов С.А. Вулканология и сейсмология на рубеже веков и тысячелетий // Вулканология и сейсмология. 2001. № 1. С. 3-4.
Федотов С.А., Двигало В.Н., Жаринов Н.А., Иванов В.В., Селиверстов Н.И., Хубуная С.А., Демянчук Ю.В., Марков И.А., Осипенко Л.Г., Смелов Н.П. Извержение вулкана Шивелуч в мае - июле 2001 г. // Вулканология и сейсмология. 2001. № 6. С. 3-15.
   Аннотация
Дано описание и представлены первые результаты изучения начальной стадии извержения вулкана Шивелуч в мае-июле 2001 г. Происходили рои землетрясений, образование трех новых больших андезитов лавовых куполов, крупные взрывы и другие связанные явления. Приведены сведения о проявлениях активности вулкана в предшествующий извержению период. Представлены результаты визуальных и сейсмологических наблюдений, проведенных во время подготовки извержения и его начальной стадии, результаты изучения динамики извержения по данным аэрофотосъемки и геодезических наблюдений, данные обследования пирокластических и грязевых потоков, наблюдавшихся во время начальной стадии извержения.
 2000
Belousov A., Belousova M., Voight B. Tsunamis Generated by Subaquatic Volcanic Explosions: Unique Data from 1996 Eruption in Karymskoye Lake, Kamchatka, Russia // Pure and Applied Geophysics. 2000. Vol. 157. № 6-8. P. 1135-1143. doi:10.1007/s000240050021.
Belousov Alexander, Belousova Marina Formation of partially submerged tuff ring during the 1996 sublacustrine surtseyan eruption in Karymskoye lake, Kamchatka,Russia // Terra Nostra. International Maar Conference: GeoForschungs Zentrum Potsdam. 2000. Vol. 6. P. 42-52.
Bocharnikov R.E., Shmulovich K I., Tkachenko S.I., Korzhinskii M.A., Steinberg G.S. Gas metasomatism: Experiments on natural Fumaroles of Kudryavyi Volcano, Iturup, Kuril Islands // Geochemistry International. 2000. Vol. 38. P. 186-193.
   Аннотация
Direct experiments on high-temperature (910 and 620°C) fumaroles of Kudryavy Volcano have demonstrated that low-density volcanic gas interacts with rock-forming and ore minerals (12 minerals were studied). The mechanism of the interaction is determined by gas metasomatism reactions: (a) at given conditions, sphalerite, calcite, barite, and gypsum are either dissolved and removed by gas or replaced with other minerals (calcite → anhydrite); (b) reactions with silicates (feldspars, olivine, and biotite) proceed owing to diffusion cation exchange. Structural rearrangements in biotite are possible due to dehydration and loss of alkalis and aluminum. The kinetics of interaction between hot gas and silicates is governed by the rate of cation diffusion in the mineral at given conditions. Precipitation of sublimates on the surfaces of minerals does not affect much the process of reactions. Interaction between volcanic gas and minerals results in albitization of feldspars and ferruginization of olivine and biotite. The scale of metasomatism in the crystalline rocks of Kudryavyi Volcano has been estimated as about 3 mm in 115 years.
Bogoyavlenskaya G.E., Naumov V.B., Tolstykh M.L., Ozerov A.Yu., Khubunaya S.A. Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) // Abstracts of IAVCEI General Assembly, 18-22 July 2000. Bali, Indonesia. 2000. P. 87
Dorendorf F., Churikova T., Koloskov A., Wörner G. Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution // Journal of Volcanology and Geothermal Research. 2000. Vol. 104. № 1–4. P. 131 - 151. doi: 10.1016/S0377-0273(00)00203-1.
   Аннотация
The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data.

Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zone—parallel N–S faults. Age-data show that the last eruptions in the Bakening area occurred only 600–1200 years ago, suggesting the volcano is potentially active.

Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene, ±plagioclase, ±magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr–Nd–Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite–dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the REE-pattern for the two suites. The decrease in the HREEs can be explained by amphibole fractionation. A slab component is less likely because it would result in fractionation of the HREE from each other, which is not observed. The higher relative amounts of LILE in the dacitic and the large scatter in the basaltic rocks must be the result of a variable source enrichment by slab-derived fluids overprinting a variable depleted mantle wedge. The plateau basalts are less depleted in HFSE and show a more fractionated HREE pattern. These lavas could either result from a slab component or the addition of an OIB-type enriched mantle in their source.