Библиография
Вулкан:
Группировать:  
Выбрать:
Записей: 2773
 2000
Dorendorf Frank, Wiechert Uwe, Wörner Gerhard Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia // Earth and Planetary Science Letters. 2000. Vol. 175. № 1–2. P. 69 - 86. doi: 10.1016/S0012-821X(99)00288-5.
   Аннотация
Oxygen isotope ratios of olivine and clinopyroxene phenocrysts from the Kluchevskoy volcano in Kamchatka have been studied by CO2 and ArF laser techniques. Measured δ18O values of 5.8–7.1‰ for olivine and 6.2–7.5‰ for clinopyroxene are significantly heavier than typical mantle values and cannot be explained by crustal assimilation or a contribution of oceanic sediments. Positive correlations between δ18O and fluid-mobile elements (Cs, Li, Sr, Rb, Ba, Th, U, LREE, K) and a lack of correlation with fluid-immobile elements (HFSE, HREE) suggest that 18O was introduced into the mantle source by a fluid from subducted altered oceanic basalt. This conclusion is supported by radiogenic isotopes (Sr, Nd, Pb). Mass balance excludes simple fluid-induced mantle melting. Instead, our observations are consistent with melting a mantle wedge which has been hydrated by 18O-rich fluids percolating through the mantle wedge. 18O-enriched fluids are derived from the subducted oceanic crust and the Emperor seamount chain, which is responsible for a particularly high fluid flux. This hydrated mantle wedge was subsequently involved in arc magmatism beneath Kluchevskoy by active intra-arc rifting.
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. Vol. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.
   Аннотация
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
Girina O.A., Bursik M.I. The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano V52B-02. // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000.
Girina O.A., Bursik M.I. The Movement of Block and Ash Flows in Channels // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000. № V52B-0.
Ozerov Alexei Y. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions // Journal of Volcanology and Geothermal Research. 2000. Vol. 95. № 1–4. P. 65 - 79. doi: 10.1016/S0377-0273(99)00118-3.
   Аннотация
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91–64), clinopyroxene (Wo45–38En40–51Fs5–20) and chrome—spinel/magnetite inclusions in them (Cr2O3 45–0 wt.%, TiO2 0.5–11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
Белоусов А.Б., Белоусова М.Г. Отложения и последовательность событий извержения вулкана Безымянный 30 марта 1956 г. (Камчатка): отложения направленного взрыва // Вулканология и сейсмология. 2000. № 2. С. 1-15.
Брайцева О.А., Певзнер М.М. О возрасте вулкана Ново-Бакенинг (Камчатка) и тефростратиграфии этого района // Вулканология и сейсмология. 2000. № 6. С. 3-12.
Гавриленко Г.М. Вулкан Мутновский проснулся // Природа. 2000. № 12. С. 41-43.
Гавриленко Г.М. Гидрологическая модель кратерного озера вулкана Малый Семячик (Камчатка) // Вулканология и сейсмология. 2000. № 6. С. 21-31.
Двигало В.Н., Мелекесцев И.В. Крупные современные обвалы на конусе вулкана Ключевской (по результатам ревизии последствий событий 1944-1945 и 1984-1985 гг.) // Вулканология и сейсмология. 2000. № 1. С. 3-17.
   Аннотация
Выявленные с помощью методов фотограмметрии изменения морфологии конуса вулкана Ключевской и ревизия других последствий извержений 1984-1985, 1944-1945 и 1994 гг. позволили по-новому проинтерпретировать ранг и геолого-геоморфологический эффект этих событий. Показано, что их видимый "катастрофизм" обусловлен крупными (0.006 км3-2.12.1985 г. и 0.05 км3- 1.01.1945 г.) обвалами привершинной части вулкана, а возникшие отрицательные формы - типичные шарра, в понимании А. Риттманна. Извержение вулкана Ключевской 1.01.1945 г. нельзя считать пароксизмальным, поскольку не было характерных для такого типа его извержений массового выброса юве-нильной пирокластики и резкого прекращения эруптивной активности.