Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2735
 G
Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies (2021)
Horváth Á, Girina O.A., Carr J.L., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12207-12226. https://doi.org/10.5194/acp-21-12207-2021.
   Аннотация
In a companion paper (Horváth et al., 2021), we introduced a new technique to estimate volcanic eruption column height from extremely oblique near-limb geostationary views. The current paper demonstrates and validates the technique in a number of recent eruptions, ranging from ones with weak columnar plumes to subplinian events with massive umbrella clouds and overshooting tops that penetrate the stratosphere. Due to its purely geometric nature, the new method is shown to be unaffected by the limitations of the traditional brightness temperature method, such as height underestimation in subpixel and semitransparent plumes, ambiguous solutions near the tropopause temperature inversion, or the lack of solutions in undercooled plumes. The side view height estimates were in good agreement with plume heights derived from ground-based video and satellite stereo observations, suggesting they can be a useful complement to established techniques.
Gigantic Eruption of the Volcano Bezymianny (1959)
Gorshkov G.S. Gigantic Eruption of the Volcano Bezymianny // Bulletin Volcanologique. 1959. Vol. 20. Vol. 2. P. 77-109. doi: 10.1007/BF02596572.
Gigantic directed blast at Shiveluch volcano (Kamchatka) (1970)
Gorshkov G.S., Dubik Y.M. Gigantic directed blast at Shiveluch volcano (Kamchatka) // Bulletin Volcanologique. 1970. Vol. 34. Vol. 1. P. 261-288. doi: 10.1007/BF02597790.
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022) (2013)
Global Volcanism Program. Volcanoes of the World, v. 4.11.0 (08 Jun 2022). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
   Аннотация
The Volcanoes of the World database is a catalog of Holocene and Pleistocene volcanoes, and eruptions from the past 12,000 years.
Gorely volcano (Southern Kamchatka) - petrochemical characteristics of magmatic evolutional series (2008)
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Gorely volcano (Southern Kamchatka) - petrochemical characteristics of magmatic evolutional series // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 50
Granulometric composition of pyroclastics from andesite volcanoes of Kamchatka (1995)
Girina O.A. Granulometric composition of pyroclastics from andesite volcanoes of Kamchatka // 5 Zonenshain conference on plate tectonics. Moscow. 1995. P. 11
Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products (2003)
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. Vol. 108. № B2. doi:10.1029/2001JB000312.
   Аннотация
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Groundwater Pressure Changes Due to Magmatic Activation: Case Study of The E-1 Well, Kamchatka Peninsula, Russia (2020)
Kopylova G.N., Boldina S.V. Groundwater Pressure Changes Due to Magmatic Activation: Case Study of The E-1 Well, Kamchatka Peninsula, Russia // Geothermal Volcanology Workshop 2020. September 03-09, 2020, Petropavlovsk-Kamchatsky, Institute of Volcanology and Seismology. 2020.
 H
H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine (2011)
Mironov N.L., Portnyagin M.V. H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine // Russian Geology and Geophysics. 2011. Vol. 52. № 11. P. 1353 - 1367. doi: 10.1016/j.rgg.2011.10.007.
   Аннотация
This paper reports new FTIR data on the H2O and CO2 concentrations in glasses of 26 naturally quenched and experimentally partially homogenized melt inclusions in olivine (Fo85–91) phenocrysts from rocks of the Kliuchevskoi volcano. Measured H2O concentrations in the inclusions range from 0.02 to 4 wt.%. The wide variations in the H2O content of the inclusions, which do not correlate with the host olivine composition and contents of major elements in the melts, are explained by the H2O escape from inclusions via diffusion through the host olivine during the magma eruption and the following cooling. The largest H2O loss is characteristic of inclusions from lava samples which cooled slowly after eruption. The minimal H2O loss is observed for inclusions from rapidly quenched pyroclastic rocks. Parental magmas of the Kliuchevskoi volcano are estimated to contain 3.5 wt.% H2O. The new data imply a 40 °C lower mantle temperatures than that estimated earlier for the Kliuchevskoi primary melts. The concentrations of CO2 in glasses range from <0.01 to 0.13 wt.% and do not correlate with the type of studied inclusions and their composition. The calculated pressures of melt equilibria with H2O–CO2 fluid inside the inclusions are lower than 270 MPa. They are significantly lower than a pressure of 500 MPa calculated from the density (~0.8 g/cm3) of cogenetic fluid inclusions in high-Fo olivine. The significant pressure drop inside the melt inclusions after their trapping in olivine might be due to the H2O loss and redistribution of CO2 from melt to daughter fluid phase. Compared with melt inclusions, cogenetic fluid inclusions provide independent information about the crystallization pressures of olivine and initial CO2 content in the Kliuchevskoi magma, which were estimated to be at least 500 MPa and 0.35 wt.%, respectively. The maximum CO2 concentrations in the primary Kliuchevskoi melts are estimated at 0.8–0.9 wt.%. The decompression crystallization of the Kliuchevskoi magmas starts at depths of 30–40 km and proceeds with a continuous decrease in CO2 content and an increase (up to 6–7 wt.%) and then a decrease (at <300 MPa) in H2O content in melts, which explains the origin of the whole spectrum of rocks and melt inclusions of the Kliuchevskoi volcano.
High-Magnesia Basalts – Source of Calc-Alkaline Series of Gorely Volcano (Kamchatka) (2009)
Gavrilenko M., Ozerov A. High-Magnesia Basalts – Source of Calc-Alkaline Series of Gorely Volcano (Kamchatka) // 6th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks, Alaska (USA). June 22-26, 2009. 2009.