Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 2079
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
 T
The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling (2006)
Dirksen O., Humphreys M.C.S., Pletchov P., Melnik O., Demyanchuk Y., Sparks R.S.J., Mahony S. The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling // Journal of Volcanology and Geothermal Research. 2006. V. 155. № 3–4. P. 201 - 226. doi: 10.1016/j.jvolgeores.2006.03.029.    Аннотация
There have been three episodes of lava dome growth at Shiveluch volcano, Kamchatka since the Plinian explosive eruption in 1964. The episodes in 1980–1981, 1993–1995 and 2001–2004 have discharged at least 0.27 km3 of silicic andesite magma. A time-averaged mean extrusion rate of 0.2 m3/s is thus estimated for the last 40 years. Here the 2001–2004 activity is described and compared with the earlier episodes. The recent activity involved three pulses in extrusion rate and a transition to ongoing lava extrusion. Estimated magma temperatures are in the range 830 to 900 °C, with 850 °C as the best estimate, using the plagioclase−amphibole phenocryst assemblage and Fe−Ti oxides. Melt inclusions in amphibole and plagioclase have maximum water contents of 5.1 wt.%, implying a minimum pressure of ∼ 155 MPa for water-saturated conditions. The magma chamber depth is estimated to be about 5–6 km or more, a result consistent with geophysical data. The thicknesses of opx–mt–amph reaction rims on olivine xenocrysts are used to estimate the residence time of olivine crystals in the shallow chamber in the range 2 months to 4 years, suggesting replenishment of deeper magma into the shallow chamber contemporaneous with eruption. The absence of decompression-driven breakdown rims around amphiboles indicates ascent times of less than 7 days. Volcanological observations of the start of the 2001–2004 episode suggest approximately 16 days for the ascent time and a conduit equivalent to a cylinder of diameter approximately 53–71 m. Application of a conduit flow model indicates that the magma chamber was replenished during the 2001–2004 eruption, consistent with the results of olivine reaction rims, and that the chamber has an estimated volume of order 7 km3.
The 2012 Fissure Tolbachik Eruption: Preliminary Results of Petrological Investigation (2014)
Izbekov P., Koloskov A., Maximov A., Khabunaya S. The 2012 Fissure Tolbachik Eruption: Preliminary Results of Petrological Investigation // Geophysical Research Abstracts. EGU General Assembly, Vienna, 2014. Vienna, Austria: EGU General Assembly 2014. 2014. V. 16. P. 11710
The 2017 Activity of Kamchatka Volcanoes and Danger to Aviation (2018)
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Petrova E. The 2017 Activity of Kamchatka Volcanoes and Danger to Aviation // Abstracts. JpGU2018. May 20-24, 2018. Chiba, Japan. 2018.
The 25 Anniversary Kamchatkan Volcanic Eruption Response Team (2018)
Girina O.A., Gordeev E.I., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Romanova I.M. The 25 Anniversary Kamchatkan Volcanic Eruption Response Team // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018. P. 80-82.
The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat (2002)
Voight B., Komorowski J-C., Norton G. E., Belousov A. B., Belousova M., Boudon G., Francis P. W., Franz W., Heinrich P., Sparks R. S. J., Young S. R. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat // Geological Society, London, Memoirs. 2002. V. 21. № 1. P. 363-407. doi:10.1144/GSL.MEM.2002.021.01.17.
The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships (2004)
Ponomareva V.V., Kyle P.R., Melekestsev I.V., Rinkleff P.G., Dirksen O.V., Sulerzhitsky L.D., Zaretskaia N.E., Rourke R. The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships // Journal of Volcanology and Geothermal Research. 2004. V. 136. № 3-4. P. 199-222. doi:10.1016/j.jvolgeores.2004.05.013.    Аннотация
The 7600 14C-year-old Kurile Lake caldera-forming eruption (KO) in southern Kamchatka, Russia, produced a 7-km-wide caldera now mostly filled by the Kurile Lake. The KO eruption has a conservatively estimated tephra volume of 140–170 km3 making it the largest Holocene eruption in the Kurile–Kamchatka volcanic arc and ranking it among the Earth’s largest Holocene explosive eruptions. The eruptive sequence consists of three main units: (I) initial phreatoplinian deposits; (II) plinian fall deposits, and (III) a voluminous and extensive ignimbrite sheet and accompanying surge beds and co-ignimbrite fallout. The KO fall tephra was dispersed over an area of >3 million km2, mostly in a northwest direction. It is a valuable stratigraphic marker for southern Kamchatka, the Sea of Okhotsk, and a large part of the Asia mainland, where it has been identified as a f6 to 0.1 cm thick layer in terrestrial and lake sediments, 1000–1700 km from source. The ignimbrite, which constitutes a significant volume of the KO deposits, extends to the Sea of Okhotsk and the Pacific Ocean on either side of the peninsula, a distance of over 50 km from source. Fine co-ignimbrite ash was likely formed when the ignimbrite entered the sea and could account for the wide dispersal of the KO fall unit. Individual pumice clasts from the fall and surge deposits range from dacite to rhyolite, whereas pumice and scoria clasts in the ignimbrite range from basaltic andesite to rhyolite. Ignimbrite exposed west and south of the caldera is dominantly rhyolite, whereas north, east and southeast of the caldera it has a strong vertical compositional zonation from rhyolite at the base to basaltic andesite in the middle, and back to rhyolite at the top. Following the KO eruption, Iliinsky volcano formed within the northeastern part of the caldera producing basalt to dacite lavas and pyroclastic rocks compositionally related to the KO erupted products. Other post-caldera features include several extrusive domes, which form islands in Kurile Lake, submerged cinder cones and the huge silicic extrusive massif of Dikii Greben’ volcano.
The Bezymyannyi, Shiveluch, and St. Helens volcanoes: A comparative revision of their catastrophic eruptions during the 20th century (2015)
Slezin Yu.B. The Bezymyannyi, Shiveluch, and St. Helens volcanoes: A comparative revision of their catastrophic eruptions during the 20th century // Journal of Volcanology and Seismology. 2015. V. 9. № 5. P. 289-294. doi:10.1134/S0742046315050073.
The Catastrophic Paleolahars of the Elbrus Volcano, Northern Caucasus (1998)
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Katov D.M., Puriga A.I. The Catastrophic Paleolahars of the Elbrus Volcano, Northern Caucasus // Doklady Earth Sciences. 1998. V. 362. № 7. P. 951-954.
The Composition of Volcanic Ash and the Dynamics of the 2013–2016 Zhupanovsky Volcano Eruption (2018)
Gorbach N.V., Plechova A.A., Manevich T.M, Portnyagin M.V., Philosofova T.M, Samoilenko S.B. The Composition of Volcanic Ash and the Dynamics of the 2013–2016 Zhupanovsky Volcano Eruption // Journal of Volcanology and Seismology. 2018. V. 12. № 3. P. 155-171. doi: DOI: 10.1134/S0742046318030028.    Аннотация
This paper presents the results from a study of ash compositions that were erupted in 2013–2016.
The juvenile component has been identified in the ejecta using data on the morphology and textural features of ash particles and the composition of volcanic glasses. The data set suggests that the activity of the volcano was phreatomagmatic.
The Elbrus caldera in the northern Caucasus (1998)
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Katov D.M., Puriga A.I. The Elbrus caldera in the northern Caucasus // Doklady Earth Sciences. 1998. V. 363 A. № 9. P. 1202-1204.
http://repo.kscnet.ru/934/ [связанный ресурс]
The Eruption of Bezymianny Volcano on August 7, 2001 (2002)
Girina O.A., Ozerov A.Yu., Nuzhdina I.N., Zelenski M.E. The Eruption of Bezymianny Volcano on August 7, 2001 // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 110-111.
The Eruptions of the Northern Group of Volcanoes on Kamchatka in 1988-1989: Seismological and Geodesic Data (1993)
Zharinov N.A., Gorelchik V.I., Zhdanova E.Yu., Andreev V.N., Belousov A.B., Belousova M.G., Gavrilenko V.A., Garbuzova V.T., Demyanchuk Yu.V., Khanzutin V.P. The Eruptions of the Northern Group of Volcanoes on Kamchatka in 1988-1989: Seismological and Geodesic Data // Volcanology and Seismology. 1993. V. 13. V. 6. P. 649-681.
The Evolutionary Stages and Petrology of the Kekuknai Volcanic Massif Reflecting the Magmatism in the Backarc Zone of the Kuril-Kamchatka Island Arc System. Part II. Petrologic and Mineralogical Features, Petrogenesis Model (2013)
Koloskov A.V., Flerov G.B., Perepelov A.B., Melekestsev I.V., Puzankov M.Yu., Filosofova T.M. The Evolutionary Stages and Petrology of the Kekuknai Volcanic Massif Reflecting the Magmatism in the Backarc Zone of the Kuril-Kamchatka Island Arc System. Part II. Petrologic and Mineralogical Features, Petrogenesis Model // Journal of Volcanology and Seismology. 2013. V. 7. № 2. P. 145-169. doi: 10.1134/S0742046313020048.    Аннотация
The Kekuknai massif was formed in the course of tectono-magmatic activity that involved the origin of a shield volcano and a caldera depression with associated emplacement of extrusions that terminated in intense post-caldera areal volcanism. The mineralogical compositions of the massifs rocks have been considered in detail. The use of previously known and newly developed indicator properties of rock-forming minerals allowed the reconstruction of the general picture of the magmatic melt evolution and conditions of rock crystallization (various fluid and water saturation levels, as well as the oxidation state of the system). Essentially island-arc or intraplate characteristics of the massif s rock compositions are found at different stages of development of a single fluid-magmatic system. Decompression evolution of the parent deep-seated basanitic magma occurred via occurrence in intermediate magma chambers of daughter magmas of trachybasalt (pre-caldera stage) or hawaiite (areal volcanism) composition. Subsequent emanate-magmatic differentiation of these melts, combined with crystallization differentiation under changing P-T-f0l conditions, resulted in the formation of the entire diversity of the Kekuknai rocks.

Кекукнайский массив сформировался в результате тектоно-магматической деятельности, выразившейся образованием щитообразного вулкана, кальдерной депрессии с сопутствующим внедрением экструзий, и завершившейся интенсивным посткальдерным ареальным вулканизмом. Проведено детальное рассмотрение особенностей минералогического состава пород массива. Использование уже имеющихся и дополнительно выявленных индикаторных возможностей породообразующих минералов позволило восстановить общую картину эволюции магматических расплавов и условия кристаллизации пород (различная флюидонасыщенность-обводненность и окисленность системы). Существенно островодужные или внутриплитные характеристики в составе пород массива проявлены на разных стадиях развития единой флюидно-магматической системы. Декомпрессионная эволюция материнской глубинной базанитовой магмы была реализована появлением в промежуточных очагах дочерних магм трахибазальтового (докальдерный этап развития системы) или гавайитового (ареальный вулканизм) состава. Дальнейшая эманационно-магматическая дифференциация этих расплавов в сочетании с кристаллизационной дифференциации в условиях меняющейся P-T-f02 обстановки и привела к образованию всего многообразия пород Кекукнайского массива.
http://repo.kscnet.ru/885/ [связанный ресурс]
The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) (2004)
Pevzner M.M. The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) // Doklady Earth Sciences. 2004. V. 395A. № 3. P. 335-337.
The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano (2000)
Girina O.A., Bursik M.I. The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano // V52B-02. // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000.
The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976 (1983)
Fedotov S.A., Markhinin Ye.K. The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976. 1983. 354 p.    Аннотация
In 1975–1976 a remarkable volcanic eruption took place on the Kamchtka peninsula, part of the Soviet Union's arc of active volcanoes. Dr Fedotov and his colleagues studied the largest basaltic eruption in history, one of the most important volcanic events in the twentieth century. During this prolonged eruption they carried out extensive seismological, geophysical, geodetic and geochemical investigations. The results of this detailed and thorough investigation were collected as a series of papers under the editorship of S. A. Fedotov and collected into this volume, which was originally published by Cambridge in 1983. The result is a classic descriptive work of a major volcanic eruption.
The June 1986 eruption of Bezymyannyi (1992)
Maksimov A.P., Firstov P.P., Girina O.A., Malyshev A.I. The June 1986 eruption of Bezymyannyi // Volcanology and Seismology. 1992. V. 13. № 1. P. 1-20.    Аннотация
This paper presents the results of visual observations, particle-size analysis, seismological observations, and acoustic measurements carried out during a small-magnitude eruption of Bezymyannyi in June 1986. A mlodel is proposed for the mechanism of the eruption. A specific character of the eruption is explained by a deeper localization of a gas-rich aagia portion in the conduit,
http://repo.kscnet.ru/797/ [связанный ресурс]
The Kamchatka volcano video monitoring system (2016)
Sorokin A.A., Korolev S.P., Romanova I.M., Girina O.A., Urmanov I.P. The Kamchatka volcano video monitoring system // 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016). Tokyo, Japan: 2016. V. II. P. 734-737.
The Klyuchevskoy Volcano Eruption in 1993 and 1994 and Its Activity During the Last Decade (1995)
Bogoyavlenskaya G.E., Ozerov A.Yu., Khubunaya S.A. The Klyuchevskoy Volcano Eruption in 1993 and 1994 and Its Activity During the Last Decade // IUGG XXI General Assembly, 1995, (Abstract VB11B-03). 1995. P. 410
The Main Eruptions of Volcanoes in Kamchatka and Kurile Islands in the 1980 (1987)
Fedotov S.A., Ivanov B.V. The Main Eruptions of Volcanoes in Kamchatka and Kurile Islands in the 1980 // Comptes rendus of the XIX General Assembly of the I.U.G.G.: Vancouver, August 9-22, 1987. 1987. V. 2. P. 422





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2019. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru