Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2408
 L
Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution (2000)
Dorendorf F., Churikova T., Koloskov A., Wörner G. Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution // Journal of Volcanology and Geothermal Research. 2000. Vol. 104. № 1–4. P. 131 - 151. doi: 10.1016/S0377-0273(00)00203-1.    Annotation
The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data.

Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zone—parallel N–S faults. Age-data show that the last eruptions in the Bakening area occurred only 600–1200 years ago, suggesting the volcano is potentially active.

Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene, ±plagioclase, ±magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr–Nd–Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite–dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the REE-pattern for the two suites. The decrease in the HREEs can be explained by amphibole fractionation. A slab component is less likely because it would result in fractionation of the HREE from each other, which is not observed. The higher relative amounts of LILE in the dacitic and the large scatter in the basaltic rocks must be the result of a variable source enrichment by slab-derived fluids overprinting a variable depleted mantle wedge. The plateau basalts are less depleted in HFSE and show a more fractionated HREE pattern. These lavas could either result from a slab component or the addition of an OIB-type enriched mantle in their source.
Le Volcan Klychevskoy: son Activite de 1932 a 1988 et son Developpement Possible (1989)
Fedotov S.A., Khrenov A.P., Zharinov N.A. Le Volcan Klychevskoy: son Activite de 1932 a 1988 et son Developpement Possible // L` Association Volcanologique Europeenne. 1989. № 18. P. 11-24.
Long and Short Term Periodic Activity at Karymsky Volcano (1999)
Ozerov A., Lees J., Ispolatov J. Long and Short Term Periodic Activity at Karymsky Volcano // AGU Spring Meeting 1999. Eos Trans. AGU, xx (xx), Spring Meet. Suppl., Abstract. Boston, Massachusetts: AGU. 1999. P. V11D-09.
Long-lived Volcanic Centers of Kamchatka Geothermal Areas (2020)
Belousov Vladimir, Belousova Irina, Khubaeva Olga Long-lived Volcanic Centers of Kamchatka Geothermal Areas // World Geothermal Congress 2020+1. Reykjavik, Iceland: 2020. С. 1-8.    Annotation
The current problems of hydrothermal processes and ore-forming systems are volcanic heat sources and mechanisms of heat
transfer. In Pauzhetsky, Semyachik and Mutnovsky geothermal areas in Kamchatka, active long-lived volcanic centers have been
studied, with which high-temperature hydrothermal systems are associated. In the Banno-Paratunsky geothermal area the Paleogene
and Neogene long-lived volcanic centers were identified, with which low-temperature hydrothermal systems are associated. The
geological history of the long-lived volcanic centers development is characterized by changes in their structure as a result of
hydrothermal-magmatic activity. These changes are manifested in the generation and evolution of magma chambers in the mantle
and in the Earth’s crust. Basalt melts of the mantle chambers transport the deep heat to the Earth’s surface through plane magmatic
channels without significant losses. The heat flow of these volcanic centers is short-lived and is characterized by a significant
capacity of ~8,000 kcal/km2s. The long-lived volcanic centers are characterized by the presence of magma chambers in the Earth's
crust. They shield the part of the mantle heat flow. Their thermal capacity on the Earth's surface is estimated from 1000 kcal/km2s
to 5000 kcal/km2s. It is assumed that a significant amount of thermal energy is retained in the long-lived volcanic centers. It is
spent on formation and activity of the chambers as well as the convective hydrothermal ore-forming systems. The evolution of such
centers is accompanied by the formation of complexes of metamorphic rocks which interaction with high-temperature mantle melts
is accompanied by redox reactions like combustion. As a result of these reactions, thermal energy is produced in such magma
chambers. A long-lived jet magmatic system is formed, and it provides the transfer of mantle heat. Heat transfer in the system is
accompanied by minimization of heat losses, accumulation of heat and its additional generation which is necessary for the heat
transfer in the structures with low thermal conductivity. The formation, evolution and extinction of magma chambers and reservoirs
in such heat-conducting structures are controlled by the thermophysical properties of the rocks, their geological structure and redox processes in them.
 M
MONITORING AND REPORTING OF KAMCHATKAN VOLCANIC ERUPTIONS (2004)
Gordeev E.I., Senyukov S.L., Girina O.A. MONITORING AND REPORTING OF KAMCHATKAN VOLCANIC ERUPTIONS // Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety, June 21-24, 2004, Session 2. Alexandria, Virginia (USA): 2004. P. 43
Magma Chambers beneath the Klyuchevskoy Volcanic Group (2007)
Khubunaya S.A., Gontovaya L.I., Sobolev A.V., Nizkous I.V. Magma Chambers beneath the Klyuchevskoy Volcanic Group // Journal of Volcanology and Seismology. 2007. Vol. 1. № 2. P. 98-118. doi: 0.1134/S0742046307020029.    Annotation
A 3D velocity model of the Earth's crust beneath the Klyuchevskoy volcanic group has been constructed using the seismic tomography method. Anomalies of the velocity parameters related to the zones of magma supply to active volcanoes have been distinguished. Petrological data on the composition, temperature, and pressure of generation and crystallization of primary melts of Klyuchevskoy volcano magnesian basalts have been obtained. The primary melt corresponds to picrite (MgO = 13-14 wt %) with an ultimate saturation of SiO2 (49-50 wt %), a high H2O content (2.2-2.9%), and incompatible elements (Sr, Rb, Ba, Hf). This melt is formed at pressures of 15-20 kbar and temperatures of 1280--1320С . Its further crystallization proceeds in intermediate magma chambers at two discrete pressure levels (i.e., greater than 6, and 1-2 kbar). The results of the petrological studies are in good agreement with the seismotomographic model.

Поступила в редакцию 1. 11. 2006 г.
Методом сейсмической томографии построена объемная скоростная модель земной коры под Ключевской группой вулканов. Выделены аномалии скоростных параметров связанных с зонами магматического питания активных вулканов. Получены петрологические данные о составе, температуре и давлении генерации и кристаллизации родоначальных расплавов магнезиальных базальтов Ключевского вулкана. Родоначальный расплав отвечает пикриту (MgO=13-14%,мас) с предельным насыщением SiO2 (49-50%, мас.), высоким содержанием H2O (2,2-2.9%) и несовместимыми элементами (Sr, Rb, Ba, Hf). Он образуется при давлениях 15-20 кбар и температурах 1280-13200С. Его дальнейшая кристаллизация проходит в промежуточных магматических камерах при двух дискретных уровнях давлений (более 6 и 1-2 кбар). Результаты петрологических исследований находятся в хорошем соответствии с сейсмотомографической моделью.
Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) (2000)
Bogoyavlenskaya G.E., Naumov V.B., Tolstykh M.L., Ozerov A.Yu., Khubunaya S.A. Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) // Abstracts of IAVCEI General Assembly, 18-22 July 2000. Bali, Indonesia. 2000. P. 87
Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis (2015)
Caudron Corentin, Taisne Benoit, Kugaenko Yulia, Saltykov Vadim Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 60 - 67. doi: 10.1016/j.jvolgeores.2015.09.010.    Annotation
Abstract In contrast of the 1975–76 Tolbachik eruption, the 2012–13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at ~ 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16–20 km to the south of Plosky Tolbachik at 20:31 {UTC} on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975–76 Tolbachik eruption and can be considered as a possible aborted eruption.
Magma mixing and degassing processes in the magma chamber of Gorely volcano (Kamchatka): evidence from wholerock and olivine chemistry (2015)
Gavrilenko M., Ozerov A., Kyle P., Carr M., Nikulin A. Magma mixing and degassing processes in the magma chamber of Gorely volcano (Kamchatka): evidence from wholerock and olivine chemistry, Abstract V43B-3120 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.. 2015.
Magma rates in feeding conduits of different volcanic centres (1981)
Fedotov S.A. Magma rates in feeding conduits of different volcanic centres // Journal of Volcanology and Geothermal Research. 1981. Vol. 9. № 4. P. 379-394. doi:10.1016/0377-0273(81)90045-7.    Annotation
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru