Главная БиблиографияПо дате публикаций
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:
Количество записей: 1786
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
 2009
Уткин И.С., Федотов С.А., Уткина Л.И. Оценка тепла, накопленного магматическим очагом вулкана Эльбрус во вмещающих его породах, и возможности его извлечения // Вулканология и сейсмология. 2009. № 5. С. 3-23.    Аннотация
Проведен анализ результатов геологических и геофизических исследований о наличии не застывшего магматического очага под вулканом Эльбрус на Кавказе, глубине его залегания и примерных размерах. Даются верхняя и нижняя грани оценок запасов тепла вмещающих горных пород, нагретых магматическим очагом вулкана с момента его возникновения до настоящего времени, с учетом изменений размеров магматического очага в процессе его эволюции и накопления им тепла. Проанализированы геолого-геофизические предпосылки использования тепловой энергии нагретых пород, вмещающих магматический очаг вулкана Эльбрус.
Федотов С.А., Жаринов Н.А., Гонтовая Л.И. О деятельности, магматической питающей системе и глубинном строении Ключевской группы вулканов // Вулканизм и геодинамика. Материалы IV Всероссийского симпозиума по вулканологии и палеовулканологии, Петропавловск-Камчатский, 22-27 сентября 2009 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2009. С. 24-27.
Фирстов П.П. Ударно-волновые и акустические эффекты в атмосфере при вулканических извержениях (обзор) // Вестник КРАУНЦ. Серия: Науки о Земле. 2009. Вып. 14. № 2. С. 100-117.    Аннотация
В статье дан обзор работ, посвященных ударно-волновым и акустическим эффектам в атмосфере от вулканических извержений. Кратко показано развитие направления «акустика вулканических извержений» (ави) и информативность волновых возмущений в атмосфере о динамике извержений и параметрах эксплозивного процесса. Приведено обоснование феноменологической классификации волновых возмущений в атмосфере от вулканических извержений.

The paper provides an overview of recent studies related to the shock-wave and acoustic effects in the atmosphere from volcanic eruptions. Brief description is given to the development of a new trend known as Acoustics from Volcanic Eruptions (AVE) and informational content of wave disturbances in the atmosphere regarding the dynamics of eruptions and parameters of explosive process. Wave disturbances in the atmosphere from volcanic eruptions were classified and presented in the paper to explain their unique nature.
Чурикова Т.Г., Гордейчик Б.Н., Иванов Б.В., Максимов А.П. Петрологические особенности пород вулкана Камень (Камчатка) // Магматизм и рудообразование. Материалы конференции, посвященной 125-летию со дня рождения академика А. Н. Заварицкого. 18-19 марта 2009 г. М.: ИГЕМ РАН. 2009. С. 139-143.
Чурикова Т.Г., Гордейчик Б.Н., Иванов Б.В., Максимов А.П. Петрохимия и минералогия пород вулкана Камень (Камчатка) // Вулканизм и геодинамика. Материалы IV Всероссийского симпозиума по вулканологии и палеовулканологии, Петропавловск-Камчатский, 22-27 сентября 2009 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2009. Т. 1. С. 224-227.
Чурикова Т.Г., Гордейчик Б.Н., Лебедев И.А., Грибань А.А., Иванов Б.В., Максимов А.П. Магматическая эволюция вулкана Камень (Камчатка) // Вулканизм, биосфера и экологические проблемы. Пятая международная научная конференция. 2009, Майкоп – Туапсе. Майкоп: Адыгейский государственный университет. 2009. С. 52-53.
Шерышева Н.Г., Осипов Г.А., Лупикина Е.Г. Характеристика донного микробного сообщества озера Карымского (Восточная Камчатка) с применением метода газовой хромато-масс-спектрометриии // Сохранение биоразнообразия Камчатки и прилегающих морей: Материалы XI международной конференции, Петропавловск-Камчатский. Камчатпресс. 2009. С. 77-81.
 2008
Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Yu.V. ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia // Remote Sensing of Environment. 2008. V. 112. P. 2569-2577.    Аннотация
An explosive eruption occurred at Bezymianny Volcano (Kamchatka Peninsula, Russia) on 24 December 2006 at 09:17 (UTC). Seismicity
increased three weeks prior to the large eruption, which produced a 12–15 km above sea level (ASL) ash column. We present field observations from 27 December 2006 and 2 March 2007, combined with satellite data collected from 8 October 2006 to 11 April 2007 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as part of the instrument's rapid-response program to volcanic eruptions. Pixel-integrated brightness temperatures were calculated from both ASTER 90 m/pixel thermal infrared (TIR) data as well as 30 m/pixel shortwave infrared (SWIR) data. Four days prior to the eruption, the maximum TIR temperature was 45 °C above the average background temperature (−33 °C) at the dome, which we interpret was a precursory signal, and had dropped to 8 °C above background by 18 March 2007. On 20 December 2006, there was also a clear thermal signal in the SWIR data of 128 °C using ASTER Band 7 (2.26 μm). The maximum SWIR temperature was 181 °C on the lava dome on 4 January 2007, decreasing below the detection limit of the SWIR data by 11 April 2007. On 4 January 2007 a hot linear feature was observed at the dome in the SWIR data, which produced a maximum temperature of 700 °C for the hot fraction of the pixel using the dual band technique. This suggests that magmatic temperatures were present at the dome at this time, consistent with the emplacement of a new lava lobe following the eruption. The eruption also produced a large, 6.5 km long by up to 425 m wide pyroclastic flow (PF) deposit that was channelled into a valley to the south–southeast. The PF deposit cooled over the following three months but remained elevated above the average background temperature. A second field investigation in March 2007 revealed a still-warm PF deposit that contained fumaroles. It was also observed that the upper dome morphology had changed in the past year, with a new lava lobe having in-filled the crater that formed following the 9 May 2006 eruption. These data provide further information on effusive and explosive activity at Bezymianny using quantitative remote sensing data and reinforced by field observations to assist in pre-eruption detection as well as post-eruption monitoring.
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. V. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.    Аннотация
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.

На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
http://repo.kscnet.ru/270/ [связанный ресурс]
Portnyagin Maxim, Ponomareva Vera, Bindeman Ilya, Christel Bogaard, Stepan Krasheninnikov, Olga Bergal-Kuvikas, Nikita Mironov, Anastasia Plechova, Kaj Hoernle Millennium-scale major element variations of Klyuchevskoy volcano magmas (Kamchatka) revealed from high-resolution study of tephra deposits // IAVCEI, Reykjavik. 2008.
Tibaldi Alessandro, Corazzato Claudia, Kozhurin Andrey, Lagmay Alfredo F.M., Pasquarè Federico A., Ponomareva Vera V., Rust Derek, Tormey Daniel, Vezzoli Luigina Influence of substrate tectonic heritage on the evolution of composite volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion // Global and Planetary Change. 2008. V. 61. № 3-4. P. 151-174. doi:10.1016/j.gloplacha.2007.08.014.    Аннотация
This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia–Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank instability in directions respectively perpendicular and oblique to fault strike. This destabilization can evolve to lateral collapse with triggering mechanisms such as seismic activity or magmatic intrusion.
Блох Ю.И., Бондаренко В.И., Рашидов В.А., Трусов А.А. Подводный вулкан Берга (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 12. № 2. С. 70-75.    Аннотация
Исследован плосковершинный подводный вулкан Берга, который, вероятно, в прошлом поднимался выше уровня моря, а затем вершина его была срезана абразией. Постройка вулкана сложена как плотными вулканогенными породами, в которых доминируют андезибазальты и базальты, так и рыхлыми вулканогенными образованиями.
наиболее намагниченные лавовые потоки изливались в привершинной части западного склона вулкана Берга уже в подводных условиях. Они сложены, вероятнее всего, базальтами и являются наиболее молодыми в пределах вулканической постройки.

The authors have studied the flat-topped Berg submarine-volcano. The volcano likely used to emerge above sea level in its past history, but suffered the top attrition subsequently. The edifice is composed as by dense rocks with prevailing andesibasalts and basalts, so by mouldy volcanic rock formations. The most magnetized lava flows effused near the top on the western slope after the volcano had sunk. These flows are possibly composed by basalts and are the youngest within the edifice.
Гавриленко Г.М., Мельников Д.В. Пятнадцать лет из жизни вулкана Мутновского // Природа. 2008. № 2. С. 54-58.
Гирина О.А. Ежегодная конференция в День вулканолога // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 11. № 1. С. 185-186.
Гирина О.А. О тефре базальтового состава // Вопросы географии Камчатки. 2008. № 12. С. 99-101.
Гирина О.А. Проект KVERT в сети Интернет // Материалы Всероссийской конференции "Современные информационные технологии для научных исследований", Магадан, 20-24 апреля 2008 г. Магадан: СВНЦ ДВО РАН. 2008. С. 49-50.
Гирина О.А., Бурсик М.И. Особенности движения пирокластических потоков по склону вулкана Безымянный (анализ результатов физического моделирования процесса) // Материалы Всероссийской конференции "Современные информационные технологии для научных исследований", Магадан, 20-24 апреля 2008 г. Магадан: СВНЦ ДВО РАН. 2008. С. 168-169.
Гирина О.А., Демянчук Ю.В., Мельников Д.В., Малик Н.А., Маневич А.Г., Нуждаев А.А., Ушаков С.В., Котенко Л.В. Действующие вулканы Камчатки и Северных Курил в январе-июне 2007 г. // Геофизический мониторинг и проблемы сейсмической безопасности Дальнего Востока России: в 2 томах. Труды региональной научно-технической конференции, Петропавловск-Камчатский, 11-17 ноября 2007 г. Петропавловск-Камчатский: ГС РАН. 2008. Т. 1. С. 68-72.
Гирина О.А., Малик Н.А., Котенко Л.В. Активность вулкана Чикурачки (о. Парамушир, Северные Курилы) в 2002-2007 гг. по данным KVERT // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. Вып. 11. № 1. С. 67-73.    Аннотация
После сильного эксплозивно-эффузивного извержения вулкана Чикурачки в 1986 г. его эруптивная активность возобновилась в 2002 г. В 2002-2007 гг. произошло пять умеренных эксплозивных извержений вулкана: в 2002, 2003, 2005 и два в 2007 гг. Наиболее продолжительное извержение наблюдалось в 2002 г., наиболее сильное – в 2003 г. В течение рассматриваемого периода пепловая колонна поднималась до 6 км над уровнем моря и пепловые шлейфы протягивались на расстояния до 700 км от вулкана (2003 г.). С 2002 г. сотрудники Камчатской группы реагирования на вулканические извержения проводят непрерывный спутниковый и эпизодический визуальный мониторинг вулкана, фиксируя, по возможности, любые изменения его активности.
Егоров О.Н. Геодинамика и палеосейсмичность фланговой области северо-западного сектора зоны перехода Тихий океан-континент / Отв. ред. Викулин А.В., Апрелков С.Е. М.: Наука. 2008. 186 с.    Аннотация
В монографии на основании ретроспективного анализа эволюции палеоморфоструктур фланговой области северо-западного сектора зоны перехода Тихий океан-континент за время существования её в современных границах (поздний мел-квартер) показано изменение геодинамической обстановки вулканизма и структурного ансамбля с периодичностью порядка 40 млн. лет. На основании геометрии современных литосферных блоков и характера среднеплейстоцен-голоценовых разрывных нарушений установлена мозаичность современного поля напряжений на фоне доминирующего сжатия во фронтальной части северо-западной фланговой области зоны перехода. Наиболее непротиворечивой моделью, объясняющей литосферное структурообразование, является астеносферная конвекция, а геодинамические перестройки с периодичностью 40-45 млн. лет связаны с изменением конвективной организации.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru