Bibliography
Volcano:
Group by:  
Jump to:
Records: 2731
 2016
Gavrilenko Maxim, Ozerov Alexey, Kyle Philip R., Carr Michael J., Nikulin Alex, Vidito Christopher, Danyushevsky Leonid Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse // Bulletin of Volcanology. 2016. Vol. 78. № 7. doi:10.1007/s00445-016-1038-z.
   Annotation
A series of large caldera-forming eruptions (361–38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700–361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of rechargeevacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ∼3 wt% H2O, and oxygen fugacity of ∼QFM + 1.5 log units. Magma temperatures of 1123–1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ∼5 wt% of MgO (Ol +Cpx + Plag) and magnetite at ∼3.5 wt% of MgO (Ol + Cpx + Plag +Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.
Girina O.A., Gordeev E.I. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia // Modern Information Technologies in Earth Sciences. Proc. of the VI International Conference, Yuzhno-Sakhalinsk, August 7-11, 2016. Vladivostok: Dalnauka. 2016. P. 29
Girina O.A., Melnikov D.V., Manevich A.G., Demyanchuk Yu.V., Nuzhdaev A.A., Petrova E. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation // Geophysical Research Abstracts Vol. 18, EGU2016-2101, 2016 EGU General Assembly 2016. EGU General Assembly 2016. 2016. https://doi.org/10.13140/RG.2.1.5179.4001.
Gordeev E.I., Girina O.A., Lupyan E.A., Sorokin A.A., Kramareva L.S., Efremov V.Yu., Kashnitskii A.V., Uvarov I.A., Burtsev M.A., Romanova I.M., Mel’nikov D.V., Manevich A.G., Korolev S.P., Verkhoturov A.L. The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands // Journal of Volcanology and Seismology. 2016. Vol. 10. № 6. P. 382-394. https://doi.org/10.1134/S074204631606004X.
   Annotation
Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands.
Gordeev E.I., Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A. 2015-2016 Activity of Kamchatkan and Northern Kuriles Volcanoes (Russia) and Danger to Aviation // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP 2016). Fairbanks, Alaska: UAF. 2016. P. 93-94.
Gordeev E.I., Loupian E.A., Girina O.A., Sorokin A.A. VolSatView Information System Capabilities for Studying Kamchatka and Northern Kuriles Volcanic Activity // Modern Information Technologies in Earth Sciences. Proc. of the VI International Conference, Yuzhno-Sakhalinsk, August 7-11, 2016. Vladivostok: Dalnauka. 2016. P. 19
Gordeychik Boris, Churikova Tatiana, Kronz Andreas, Simakin Alexander, Wörner Gerhard First data on magma ascent and residence times retrieved from Fe-Mg and trace element zonation in olivine phenocrysts from Kamchatka basalts // Geophysical Research Abstracts. 2016. Vol. 18. P. EGU2016-12839.
   Annotation
Compositional zonation in olivine phenocrysts and diffusion modelling have been used in the last ten years to estimate magma residence times and the duration of magma ascent. The fundamental assumption is that mixing with newly injected magma into a reservoir triggers diffusional exchange between mafic olivine crystals and more evolved magma and that this magma mixing eventually triggers eruption. If depth of mixing is known, this translates to ascent rates of magmas to the surface. We applied this approach to a series of different arc basalt lavas from Kamchatka to constrain the rates of magma ascent and magma resident in what is one of the most active subduction zones in the world that is also dominated by an abundance of unusually mafic magmas. Our sample collection cover the principal modes of arc magmatism in Kamchatka: from different volcanic complexes (stratovolcano, dikes, summit eruptions, monogenetic cones), of different age (from Late-Pleistocene to Holocene and recent eruptions), from different magmatic regimes (long-lived volcanoes vs. monogenetic eruptions) and different major element composition (from basalt to basaltic andesite of different geochemical character including LILE enrichments). We analyzed and modelled zonation profiles for a range of elements with different diffusivities (e.g. Mg-Fe, Ca, Ni, Mn, Cr) to assess the role of variable diffusivities as a function of major and trace elements in the olivines from different P-T conditions. First data were obtained on samples from the Klyuchevskoy, Shiveluch and Tolbachik, including recent most eruption in 2012/2013. These data show that for some samples the zonation patterns are much more complex than is usually observed: high-Mg olivines at different volcanoes have very different zonation patterns, including normally, reversely zoned grains or even show highly complex repetitive zonation that indicate large compositional changes in the surrounding magma at very short time scales (years). Thus in some Kamchatka basalts, we observe unusual Mg-Fe zonations that are linked to complex mixing, possibly resorption and subsequent crystal growth processes that are generally not preserved due to fast diffusion of Mg-Fe. Based on a first assessment of our measured profiles, the values for diffusion times in Fo-rich olivines (88 to 92% Fo) vary from only a few months to years and thus magma ascent from deep magma sources must have been fast.
Kalacheva Elena, Taran Yuri, Kotenko Tatiana, Hattori Keiko, Kotenko Leonid, Solis-Pichardo Gabriela Volcano–hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: Geochemistry and solute fluxes of magmatic chlorine and sulfur // Journal of Volcanology and Geothermal Research. 2016. Vol. 310. P. 118-131. doi:10.1016/j.jvolgeores.2015.11.006.
   Annotation
Ebeko volcano at the northern part of Paramushir Island in the Kuril island arc produces frequent phreatic eruptions and relatively strong fumarolic activity at the summit area ~ 1000 m above sea level (asl). The fumaroles are characterized by low-temperature, HCl- and S-rich gas and numerous hyper-acid pools (pH < 1) without drains. At ~ 550 m asl, in the Yurieva stream canyon, many hot (up to 87 °C) springs discharge ultra-acidic (pH 1–2) SO4–Cl water into the stream and finally into the Sea of Okhotsk. During quiescent stages of degassing, these fumaroles emit 1000–2000 t/d of water vapor, < 20 t/d of SO2 and < 5 t/d of HCl. The measurement of acidic hot Yurieva springs shows that the flux of Cl and S, 60–80 t/d each, is independent on the volcanic activity in the last two decades. Such high flux of Cl is among the highest ever measured in a volcano–hydrothermal system. Oxygen and hydrogen isotopic composition of water and Cl concentration for Yurieva springs show an excellent positive correlation, indicating a mixing between meteoric water and magmatic vapor. In contrast, volcanic gas condensates of Ebeko fumaroles do not show a simple mixing trend but rather a complicated data suggesting evaporation of the acidic brine. Temperatures calculated from gas compositions and isotope data are similar, ranging from 150 to 250 °C, which is consistent with the presence of a liquid aquifer below the Ebeko fumarolic fields. Saturation indices of non-silicate minerals suggest temperatures ranging from 150 to 200 °C for Yurieva springs. Trace elements (including REE) and Sr isotope composition suggest congruent dissolution of the Ebeko volcanic rocks by acidic waters. Waters of Yurieva springs and waters of the summit thermal fields (including volcanic gas condensates) are different in Cl/SO4 ratios and isotopic compositions, suggesting complicated boiling–condensation–mixing processes.
Khubunaya S.A., Eremina T.S., Sobolev A.V. The classification of potassium basaltic trachyandesites that were discharged by the 2012–2013 parasitic eruption on Ploskii Tolbachik Volcano, Kamchatka using geochemical criteria // Journal of Volcanology and Seismology. 2016. Vol. 10. № 1. P. 33-49. doi: 10.1134/S0742046316010024.
   Annotation
Изучены петрографические, минералогические и геохимические особенности К-трахиандезибазальтов побочного извержения 2012–2013 гг. вулкана Плоский Толбачик. К-трахиандезибазальты имеют явные признаки надсубдукционного происхождения. Это глубоко дифференцированные породы, характеризующиеся значительным фракционированием плагиоклаза. Изучение радиогенных изотопных отношений Sr, Nd и Pb в К-трахиандезибазальтах свидетельствует об их мантийном происхождении и отсутствии влияния земной коры на их составы. Проведен сравнительный анализ отношений содержаний некогерентых элементов в К-трахиандезибазальтов,внутриплитных,рифтогенных и островодужных умереннокалиевых базальтах и андезибазальтах к содержанию этих элементов в примитивной мантии. Геохимические особенности К-трахиандезибазальтов позволяют отнести их к надсубдукционной субщелочной формации калиевого ряда.
Melnikov Dmitry, Malik N., Kotenko T., Inguaggiato Salvatore, Zelenski M. A New Estimate of Gas Emissions from Ebeko Volcano, Kurile Islands // Goldschmidt Conference. 26 June - 1 July, Yokohama, Japan. 2016. P. 2047
   Annotation
Concentrations and emission rates of major gas species were measured in August 2015 at Ebeko volcano, a quiescently degassing andesitic volcano on Paramushir Island, Northern Kuriles. Using mobile and scanning DOAS measurements we estimated SO 2 emission from the active crater of the volcano at 100 +36/-15 t/d. Based on the comparison of plume areas of individual fumaroles, ca. 90% of the total gas emission from Ebeko in 2015 was provided by a single powerful vent (" Active Funnel " fumarole) and the rest was shared among low-temperature fumaroles. At the time of measurements, gases from the main fumarole had temperature from 420 to 490 °C and composition close to the average arc gas [1], as shown in Table. Gas species CO2 SO2 H2S HCl H2O T, °C mmol/mol Main fumarole 27.9 23.5 6.1 5.6 936 420 Low-temp. jets 92.2 2.62 0.68 1.6 902 <120 Low-temperature fumaroles (<120 °C) emitted gas enriched in CO 2 (up to 28 mol%, 9.2 mol% on average). Such CO 2 enrichment together with depletion in HCl and sulfur species can be explained by scrubbing of soluble gas species by a well-developed hydrothermal system which discharges ultra-acid SO 4-Cl waters [2]. A weighted-average estimate of the total gas+vapor emission from the Ebeko summit provided 1470 t/d, which includes ~ 101 t/d SO2, ~ 110 t/d CO2, ~ 14 t/d H2S and HCl, and 1230 t/d of water vapour with > 50% of the magmatic component. The gas fluxes measured in August 2015 using DOAS fall into the range of previous measurements made from 1960 to 2012 that used direct methods [2] and correspond to the moderate degassing rate of the volcano.