Group by:  
Jump to:
Records: 2283
Churikova T., Gordeychik B., Wörner G. Mantle and fluid sources below Klyuchevskoy-Kamen-Bezymianny line (Kamchatka) // Geofluid-3. Nature and Dynamics of fluids in Subduction Zones. Tokyo, Japan, February 28 - March 3, 2014. 2014. P. 72    Annotation
Kamen volcano is an extinct volcanic complex located in the central part of the Klyuchevskaya group of volcanoes (KGV) between active Klyuchevskoy, Bezymianny, and Ploskie Sopky volcanoes. Kamen volcano was mapped by V.A. Ermakov only in the 1970s. However the modern geochemical studies of Kamen volcano have not been previously carried out and its relationship and petrogenesis in comparison to other active neighbors are unknown. A modern geochemical study of Kamen volcano is needed because it will shed light not only on the history of the volcano itself and its closest neighbors, but also on the history and magmatic evolution of the KGV melts in general. The distance between the summits of Kamen and Klyuchevskoy is only 5 km, the same as between Kamen and Bezymianny. The close relationship in space and time of the KGV and the common zone of seismicity below them suggests a common source and a possible genetic relationship between their magmas. However, the Late-Pleistocene-Holocene lavas of all these neighboring volcanoes are very different: high-Mg and high-Al Ol-Cpx-Pl basalts and basaltic andesites occur at Klyuchevskoy volcano, and Hbl-bearing andesites and dаcites dominate at Bezymianny volcano. The rocks of Ploskie Sopky volcano, situated only 10 km NW of Kamen, are represented by medium-high-K subalkaline lavas.
Churikova Tatiana, Gordeychik Boris, Iwamori Hikaru, Nakamura Hitomi, Nishizawa Tatsuji, Haraguchi Satoru, Yasukawa Kazatuka, Ishizuka Osamu Petrology and geochemistry of the Tolbachik stratovolcano // 8th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes. Finding clues for science and disaster mitigation from international collaboration (JKASP-2014). 22-26 September 2014, Sapporo, Japan. 2014. P. 1-3.    Annotation
The numerous of national and international publications were dedicated to Plosky Tolbachik volcano eruptions and adjacent monogenetic cones, which were erupted repeatedly during Holocene, including historical time [i.e. Vlodavets, 1937; Popkov, 1946; Peep, 1946, 1954; Menyailov, 1953; Sirin and Farberov, 1963; Kirsanov et al., 1974; Ivanov and Khrenov, 1979; Fedotov, 1984; Krivenko, 1990; Kersting, 1995; Tatsumi et al., 1995; Hochstaedter et al., 1996; Kepezhinskas et al., 1997; Turner et al., 1998; Pineau et al., 1999; Volynets et al., 2000; Churikova et al., 2001; Münker et al., 2004; Portnyagin et al., 2007; Volynets et al., 2013]. However, all these data mainly relates to monogenetic cones, but the information on stratovolcanoes itself practically absent. There are only few papers on Ostry and Plosky Tolbachik stratovolcanoes focusing on geology [Ermakov and Vazheevskaya, 1973], petrography and some petrochemistry of the rocks [Ermakov, 1977; Flerov and Melekestsev, 2013]. The modern geochemical and isotope studies of the stratovolcanoes were never achieved. In this report we present geological, petrographical, petrochemical, geochemical and some K-Ar data on the rocks of Tolbachik massif. The present report based on representative collection of 154 samples from stratovolcanoes, dikes, monogenetic cones of different ages, including last 2012-2013 eruption. Additionally our study included samples separately standing edifice of Povorotnaya mount, which age according to K-Ar dating is 0.306±0.01 Ма.
Edwards B. , Belousov A., Belousova M. Propagation style controls lava-snow interactions // Nature Communications. 2014. V. 5. № 56666. P. 1-5. doi: 10.1038/ncomms6666.
Firstov P.P., Shakirova A.A. Seismicity observed during the precursory process and the actual eruption of Kizimen Volcano, Kamchatka in 2009-2013 // Journal of Volcanology and Seismology. 2014. V. 8. № 4. P. 203-217. doi: 10.1134/S0742046314040022.    Annotation
Kizimen Volcano began to erupt in December 2010. The eruption was preceded by a precursory period of seismicity that lasted for 20 months. This paper discusses the space-time features of the precursory seismicity. We provide a brief description of this explosive and effusive eruption between December 2010 and March 2013. The eruption started with some explosive activity followed by extrusion of a viscous lava flow. The extrusion of viscous andesitic magma and the motion of the lava flow down the slope were accompanied by unusual seismicity in the form of the quasiperiodic occurrence of microearthquakes, the so-called drumbeat phenomenon. It is shown that the occurrence of a drumbeat was first recorded during the extrusion process at the volcano's summit. Subsequently, the drumbeat mode of activity was caused by the front of the viscous lava flow as it was moving down the slope. The dynamic parameters of the microearthquakes varied in accordance with the dimensions of the lava flow front. The motion of the main tongue of the lava flow (March to September 2011) gave rise to drumbeat I with energy classes of microearthquakes K = 3-5.5, while the second tongue, which was smaller than the first, produced drumbeat II with microearthquakes of K < 3 during its motion down the slope. In January 2013 we saw a phenomenon similar to the drumbeat that was recorded at the start of the eruption. This was caused by an obelisk being extruded at the volcano's summit. В© 2014 Pleiades Publishing, Ltd.
Gavrilenko M., Ozerov A. The Sub-Crustal Magma Chamber Existence and Magma Ascent Rate for Klyuchevskoy Volcano (Kamchatka): Constrains from Ni Zonation in Olivine Phenocrysts // Abstract V51A-4726 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec.. 2014.
Girina O.A., Manevich A.G., Melnikov D.V., Demyanchuk Yu.V., Petrova E. Explosive Eruptions of Kamchatkan Volcanoes in 2013 and Danger to Aviation // EGU2014. Abstracts. Vienna, Austria: 2014. P. 1468
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V. Activity of Kamchatkan Volcanoes in 2012-2013 and Danger to Aviation // Abstracts. International Workshop “JKASP-8”. Sapporo. Japan. September 22-26. 2014. 2014.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 // Abstracts. Japan Geoscience Union Meeting. Yokohama, Japan: JpGU. 2014. № 00275.
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A. Satellite monitoring of the Kamchatkan active volcanoes // Modern Information Technologies in Earth Sciences. Proceedings of the International Conference, Petropavlovsk-Kamchatsky, September 8-13, 2014. Vladivostok: Dalnauka. 2014. P. 51-52.
Girina O.A., Nuzhdaev A.A. On Some Features Peculiar to the September 22, 2005 Eruption of Young Shiveluch Volcano, Kamchatka // Journal of Volcanology and Seismology. 2014. V. 8. № 4. P. 218-227. doi: 10.1134/S0742046314040034.    Annotation
An explosive eruption of Young Shiveluch Volcano occurred on September 22, 2005, discharging a pyroclastic flow about 20 km long in the Baidarnaya River valley and an ashfall in the area of the Northern group of volcanoes.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.