Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2773
 M
Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia (1999)
Belousov Alexander, Belousova Marina, Voight Barry Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia // Bulletin of Volcanology. 1999. Vol. 61. № 5. P. 324-342. doi:10.1007/s004450050300.
 N
Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale (2018)
Ermolin M.S., Fedotov P.S., Malik N.A., Karandashev V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale // Chemosphere. 2018. Vol. 200. P. 16-22. doi: 10.1016/j.chemosphere.2018.02.089.
National Report for the International Association of Volcanology and Chemistry of the Earth’s Interior of the International Union of Geodesy and Geophysics 2011–2014. Presented to the XXVI General Assembly of the IUGG (2015)
National Report for the International Association of Volcanology and Chemistry of the Earth’s Interior of the International Union of Geodesy and Geophysics 2011–2014. Presented to the XXVI General Assembly of the IUGG Geoinf. Res. Papers, 3, BS3011. / Ed. Churikova T.G., Gordeychik B.N., Fedotov S.A. Moscow: GCRAS Publ. 2015. 185 p. doi: 10.2205/2015IUGG-RU-IAVCEI.
   Аннотация
In the present National Report, major results are given of research conducted by Russian scientists in 2011–2014 on the topics of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) of the International Union of Geodesy and Geophysics. Kamchatka Peninsula with its famous Klyuchevskaya Group of volcanoes is the most volcanically active area in Russia and one of the most active in the world. Majority of researches and scientific results on Volcanology and Geochemistry of the Earth’s Interior during 2011–2014 were achieved in this region including recent data on new Tolbachik fissure eruption in 2012–2013. Besides it, the scientific results on the magmatism outside Russia, which were achieved by Russian scientists, are also included in this review. Major achievements in the chemistry of the Earth, geothermy, geodynamics, geochronology and deep mantle structure are featured. The studies as for the single volcanoes as well the regional observations are outlined. The theoretical and applied efforts connected to the volcanological processes are considered. The main conclusions are illustrated by summarized figures. All the required references are given.
Native AI and Si formation (1995)
Korzhinsky M. A., Tkachenko S. I., Shmulovich K. I., Steinberg G. S. Native AI and Si formation // Nature. 1995. Vol. 375. № 6532. P. 544 doi:10.1038/375544a0.
Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka (2015)
Chaplygin Ilya, Yudovskaya Marina, Vergasova Lidiya, Mokhov Andrey Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 200 - 209. doi: 10.1016/j.jvolgeores.2015.08.018.
   Аннотация
Abstract Aggregates and euhedral crystals of native gold were found in sublimates formed during New Tolbachik Fissure Eruption in 2012–2013 (NTFE). Gold-bearing sublimate samples were taken from a red-hot (690 °C) degassing fracture in the roof of an active lava tunnel 1.5 km from active Naboko cinder cone in May 2013. The gas condensate collected at 690 °C in this site contains 16 ppb Au, 190 ppb Ag and 1180 ppm Cu compared to 3 ppb Au, 39 ppb Ag and 9.7 ppm Cu in the condensate of pristine magmatic gas sampled at 1030 °C. The 690 °C volcanic gas is most likely a mix of magmatic gas and local snow buried under the lava flows as indicated by oxygen and hydrogen isotope compositions of the condensate. The lower-temperature gas enrichment in gold, copper and chlorine is resulted from evaporation of the 690 °C condensate during forced gas pumping at sampling. Native gold was also found in fumarolic encrustations collected from caverns in basalt lava flows with temperature up to 600 °C in June 2014, in a year after eruption finished. The native gold precipitation in newly formed Cu-rich sublimates together with the well known gold occurrences in cinder cones of 1975–1976 Large Tolbachik Fissure Eruption manifest a transport capability of oxidized volcanic gas.
New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution (2004)
Pevzner M.M. New data on Holocene monogenetic volcanism of the Northern Kamchatka: ages and space distribution // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. С. 72-76.
New discovered Late Miocene Verkhneavachinsksya caldera on Eastern Kamchatka (2016)
Bergal-Kuvikas Olga, Leonov V., Rogozin A., Bindeman Ilya, Klyupitsky E. New discovered Late Miocene Verkhneavachinsksya caldera on Eastern Kamchatka // 9th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2016). 2016, Fairbanks, Alaska University. 2016.
Numerical Modeling of the Ash Cloud Movement from the Catastrophic Eruption of the Sheveluch Volcano in November 1964 (2022)
Girina O.A., Malkovsky S.I., Sorokin A.A., Loupian E.A., Korolev S.P. Numerical Modeling of the Ash Cloud Movement from the Catastrophic Eruption of the Sheveluch Volcano in November 1964 // Remote Sensing. 2022. Вып. 14. № 3449. https://doi.org/10.3390/rs14143449.
   Аннотация
This paper reconstructs, for the first time, the motion dynamics of an eruptive cloud formed during the catastrophic eruption of the Sheveluch volcano in November 1964 (Volcanic Explosivity Index 4+). This became possible due to the public availability of atmospheric reanalysis data from the ERA-40 archive of the European Center for Medium-Range Weather Forecasts (ECMWF) and the development of numerical modeling of volcanic ash cloud propagation. The simulation of the eruptive cloud motion process, which was carried out using the FALL3D and PUFF models, made it possible to clarify the sequence of events of this eruption (destruction of extrusive domes in the crater and the formation of an eruptive column and pyroclastic flows), which lasted only 1 h 12 min. During the eruption, the ash cloud consisted of two parts: the main eruptive cloud that rose up to 15,000 m above sea level (a.s.l.), and the co-ignimbrite cloud that formed above the moving pyroclastic flows. The ashfall in Ust-Kamchatsk (Kamchatka) first occurred out of the eruptive cloud moving at a higher speed, then out of the co-ignimbrite cloud. In Nikolskoye (Bering Island, Commander Islands), ash fell only out of the co-ignimbrite cloud. Under the turbulent diffusion, the forefront of the main eruptive cloud rose slowly in the atmosphere and reached 16,500 m a.s.l. by 04:07 UTC on November 12. Three days after the eruption began, the eruptive cloud stretched for 3000 km over the territories of the countries of Russia, Canada, the USA, Mexico, and over both the Bering Sea and the Pacific Ocean. It is assumed that the well-known long-term decrease in the solar radiation intensity in the northern latitudes from 1963–1966, which was established according to the world remote sensing data, was associated with the spread of aerosol clouds formed not only by the Agung volcano, but those formed during the 1964 Sheveluch volcano catastrophic eruption
Numerical modeling of a rockslide avalanche at Koryakskiy volcano, Kamchatka (1996)
Adushkin V.V., Zykov Yu.N., Ivanov B.A. Numerical modeling of a rockslide avalanche at Koryakskiy volcano, Kamchatka // Volcanology and Seismology. 1996. Vol. 17. № 6. P. 705-717.
   Аннотация
A numerical model is proposed for the mechanism of a rockslide avalanche on the slope of Koryakskiy volcano caused by the emplacement of sheeted intrusive bodies. The model of non-stationary geomechanical processes with abnormally low internal friction is used to calculate an avalanchelike movement during a potential collapse of the cone.
Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia (2010)
Torsvik T., Paris R., Didenkulova I., Pelinovsky E., Belousov A., Belousova M. Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia // Natural Hazards and Earth System Science. 2010. Vol. 10. № 11. P. 2359-2369. doi:10.5194/nhess-10-2359-2010.