Petrological–Geochemical Model for Genetic Relationships between Basaltic and Andesitic Magmatism of Klyuchevskoi and Bezymyannyi Volcanoes, Kamchatka (1997)
Ozerov A.Yu., Ariskin A.A., Kyle Ph., Bogoyavlenskaya G.E., Karpenko S.F. Petrological–Geochemical Model for Genetic Relationships between Basaltic and Andesitic Magmatism of Klyuchevskoi and Bezymyannyi Volcanoes, Kamchatka // Petrology. 1997. Vol. 5. № 6. P. 550–569
Petrology and geochemistry of the New Tolbachik Fissure Eruption volcanic rocks and their evolution during the first two weeks of eruption (2013)
Volynets Anna, Melnikov Dmitry, Yakushev Anton, Tolstykh Maria Petrology and geochemistry of the New Tolbachik Fissure Eruption volcanic rocks and their evolution during the first two weeks of eruption // IAVCEI 2013 Scientific Assembly. July 20 - 24, Kagoshima, Japan. 2013. P. 743
Petrology and geochemistry of the Tolbachik stratovolcano (2014)
Churikova Tatiana, Gordeychik Boris, Iwamori Hikaru, Nakamura Hitomi, Nishizawa Tatsuji, Haraguchi Satoru, Yasukawa Kazatuka, Ishizuka Osamu Petrology and geochemistry of the Tolbachik stratovolcano // 8th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes. Finding clues for science and disaster mitigation from international collaboration (JKASP-2014). 22-26 September 2014, Sapporo, Japan. 2014. P. 1-3.
Annotation
The numerous of national and international publications were dedicated to Plosky Tolbachik volcano eruptions and adjacent monogenetic cones, which were erupted repeatedly during Holocene, including historical time [i.e. Vlodavets, 1937; Popkov, 1946; Peep, 1946, 1954; Menyailov, 1953; Sirin and Farberov, 1963; Kirsanov et al., 1974; Ivanov and Khrenov, 1979; Fedotov, 1984; Krivenko, 1990; Kersting, 1995; Tatsumi et al., 1995; Hochstaedter et al., 1996; Kepezhinskas et al., 1997; Turner et al., 1998; Pineau et al., 1999; Volynets et al., 2000; Churikova et al., 2001; Münker et al., 2004; Portnyagin et al., 2007; Volynets et al., 2013]. However, all these data mainly relates to monogenetic cones, but the information on stratovolcanoes itself practically absent. There are only few papers on Ostry and Plosky Tolbachik stratovolcanoes focusing on geology [Ermakov and Vazheevskaya, 1973], petrography and some petrochemistry of the rocks [Ermakov, 1977; Flerov and Melekestsev, 2013]. The modern geochemical and isotope studies of the stratovolcanoes were never achieved. In this report we present geological, petrographical, petrochemical, geochemical and some K-Ar data on the rocks of Tolbachik massif. The present report based on representative collection of 154 samples from stratovolcanoes, dikes, monogenetic cones of different ages, including last 2012-2013 eruption. Additionally our study included samples separately standing edifice of Povorotnaya mount, which age according to K-Ar dating is 0.306±0.01 Ма.
Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–13 (2015)
Plechov Pavel, Blundy Jon, Nekrylov Nikolay, Melekhova Elena, Shcherbakov Vasily, Tikhonova Margarita S. Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–13 // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 182 - 199. doi: 10.1016/j.jvolgeores.2015.08.011.
Annotation
Abstract We report petrography, and bulk rock, mineral and glass analyses of eruptive products of the 2012–13 eruption of Tolbachik volcano, Central Kamchatka Depression, Russia. Magmas are shoshonitic in composition, with phenocrysts of olivine and plagioclase; clinopyroxene phenocrysts are scarce. Samples collected as bombs from the active vent, from liquid lava at the active lava front, and as naturally solidified “toothpaste” lava allow us to quantify changes in porosity and crystallinity that took place during 5.25 km of lava flow and during solidification. Olivine-hosted melt inclusions from rapidly-cooled, mm-size tephra have near-constant {H2O} contents (1.19 ± 0.1 wt) over a wide range of {CO2} contents (< 900 ppm), consistent with degassing. The groundmass glasses from tephras lie at the shallow end of this degassing trend with 0.3 wt {H2O} and 50 ppm CO2. The presence of small saturation, rather than shrinkage, bubbles testifies to volatile saturation at the time of entrapment. Calculated saturation pressures are 0.3 to 1.7 kbar, in agreement with the depths of earthquake swarms during November 2012 (0.6 to 7.5 km below the volcano). Melt inclusions from slowly-cooled and hot-collected lavas have {H2O} contents that are lower by an order of magnitude than tephras, despite comparable {CO2} contents. We ascribe this to diffusive {H2O} loss through olivine host crystals during cooling. The absence of shrinkage bubbles in the inclusions accounts for the lack of reduction in dissolved {CO2} (and S and Cl). Melt inclusions from tephras experienced < 3 wt post-entrapment crystallisation. Melt inclusion entrapment temperatures are around 1080 °C. Compared to magmas erupted elsewhere in the Kluchevskoy Group, the 2012–13 Tolbachik magmas appear to derive from an unusually H2O-poor and K2O-rich basaltic parent.
Kuno H. Petrology of Alaid volcano, north Kurile // Japanese journal of geology and geography. 1935. Vol. 12. P. 153-162.
Petrology of Products Erupted from Klyuchevskoi Volcano (Predskazannyi Eruption, 1983) (1988)
Khrenov A.P., Anan'ev V.V., Baluev E.Yu., Litasov N.E., Ozerov A.Yu. Petrology of Products Erupted from Klyuchevskoi Volcano (Predskazannyi Eruption, 1983) // Volcanology and Seismology. 1988. Vol. 7. № 1. P. 63-94.
Petrophysical features of lava flows from Bezymyannyi volcano, Kamchatka (2012)
Ladygin V.М., Girina O.A., Frolova Yu.V. Petrophysical features of lava flows from Bezymyannyi volcano, Kamchatka // Journal of Volcanology and Seismology. 2012. Vol. 6. № 6. P. 341-351. https://doi.org/10.1134/S074204631206005X.
Annotation
This paper presents results from a study of lava flows that were discharged by Bezymyannyi Volcano at different times, from old (about 3500 years ago) to recent ones (1985–1989). We provide detailed descriptions of the composition, structure, and petrophysical properties for the main types of constituent rocks, which are andesites and basaltic andesites. It was found that porosity is the leading factor that controls rock properties, while the effects of structural and mineralogical features are less prominent. We demonstrate the variation in the properties of rocks that compose the lava flows in relation to their ages: the older a rock is, the higher its density and strength and the lower its porosity is.
Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia (2013)
Shcherbakov Vasily D., Neill Owen K., Izbekov Pavel E., Plechov Pavel Yu. Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 132-140. doi:10.1016/j.jvolgeores.2013.02.010.