Main BibliographyПо дате публикаций

Jump to:
Records: 2157
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
Andrews B.J., Gardner J.E., Tait S., Ponomareva V.V., Melekestsev I.V. Dynamics of the 1800 14C yr BP caldera-forming Eruption of Ksudach Volcano, Kamchatka, Russia // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 325-342. № doi:10.1029/172GM23.    Annotation
The 1800 14C yr BP Ksudach KS1 rhyodacite deposits present an opportunity to study the effects of caldera collapse on eruption dynamics and behavior. Stratigraphic relations indicate four Phases of eruption, Initial, Main, Lithic, and Gray. Well-sorted, reverse-graded pumice fall deposits overlying a silty ash compose the Initial Phase layers. The Main, Lithic, and Gray Phases are represented by pumice fall layers interbedded with pyroclastic flow and surge deposits (proximally) and co-ignimbrite ashes (distally). Although most of the deposit is <30 wt.% lithics, the Lithic Phase layers are >50 wt.% lithics. White and gray pumice are compositionally indistinguishable, however vesicle textures and microlite populations indicate faster ascent by the white pumice prior to eruption of the Gray Phase. The eruption volume is estimated as ∼8.5 km3 magma (dense rock equivalent) and ∼3.6 km3 lithics. Isopleth maps indicate mass flux ranged from 5–10×10^7 kg/s during the Initial Phase to >10^8 kg/s during the Main, Lithic, and Gray Phases. Caldera Collapse during the Lithic Phase is reflected by a large increase in lithic particles and the abrupt textural change from white to gray pumice; collapse began following eruption of ∼66% of the magma, and finished when ∼72% of the magma was erupted. Stratigraphic, granulometric, and component analyses indicate simultaneous eruption of buoyant plumes and non-buoyant flows during the Main, Lithic, and Gray Phases. Although mass flux did not change significantly following caldera collapse, the Gray Phase of eruption was dominated by non-buoyant flows in contrast to the earlier Phases that erupted mostly buoyant plumes.
Bazanova L.I., Puzankov M.Yu., Maksimov A.P. Plinian basaltic andesite eruptions of Avachinsky volcano, Kamchatka, Russia: chronology, dynamics and deposits // European Geosciences Union 2007. 2007. V. 9. P. 05012
Belousov Alexander, Voight Barry, Belousova Marina Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits // Bulletin of Volcanology. 2007. V. 69. № 7. P. 701-740. doi:10.1007/s00445-006-0109-y.
Carter Adam J., Ramsey Michael S., Belousov Alexander B. Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data // Bulletin of Volcanology. 2007. V. 69. № 7. P. 811-815. doi:10.1007/s00445-007-0113-x.
Churikova Tatiana, Wörner Gerhard, Mironov Nikita, Kronz Andreas Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc // Contributions to Mineralogy and Petrology. 2007. V. 154. № 2. P. 217-239. doi:10.1007/s00410-007-0190-z.    Annotation
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE.
Fedotov S.A., Sugrobov V.M., Utkin I.S., Utkina L.I. On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply // Journal of Volcanology and Seismology. 2007. V. 1. № 1. P. 28-41. doi:10.1134/S0742046307010022.    Annotation
The results of geological and geophysical studies, including recent ones, which make it possible to verify the existence of a liquid magma chamber below the Avachinsky volcano on Kamchatka, and to estimate the chamber depth and approximate dimensions, are analyzed. The heat stored in the host rock heated by the volcanic magma chamber from the time of chamber origination to the present is estimated, taking variable chamber dimensions during the process of evolution into account. The geological-geophysical prerequisites for using the thermal energy of the heated rock which surrounds the magma chamber to supply heat and power to Petropavlovsk-Kamchatskii are analyzed. The creation of an underground geothermal circulation system (fracture heat exchanger) using deep boreholes is proposed.
Girina O.A., Manevich A.G., Malik N.A., Melnikov D.V., Ushakov S.V., Demyanchuk Yu.V., Kotenko L.V. Active volcanoes of Kamchatka and Northern Kurils in 2005 // Journal of Volcanology and Seismology. 2007. V. 1. № 4. P. 237-247. doi: 10.1134/S0742046307040021.    Annotation
In 2005, six major eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoy, Shiveluch, and Karymskii) occurred and the Avachinskii, Mutnovskii, and Gorelyi Kamchatka volcanoes and the Ebeko and Chikurachki volcanoes in northern Kurils were in a state of increased activity. Owing to a close collaboration between the KVERT project, Elizovo airport meteorological center, and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo, Anchorage, and Washington VAACs), all necessary measures for safe airplane flights near Kamchatka were taken and fatal accidents related to volcanic activity did not occur.
Khubunaya S.A., Gontovaya L.I., Sobolev A.V., Nizkous I.V. Magma Chambers beneath the Klyuchevskoy Volcanic Group // Journal of Volcanology and Seismology. 2007. V. 1. № 2. P. 98-118. doi: 0.1134/S0742046307020029.    Annotation
A 3D velocity model of the Earth's crust beneath the Klyuchevskoy volcanic group has been constructed using the seismic tomography method. Anomalies of the velocity parameters related to the zones of magma supply to active volcanoes have been distinguished. Petrological data on the composition, temperature, and pressure of generation and crystallization of primary melts of Klyuchevskoy volcano magnesian basalts have been obtained. The primary melt corresponds to picrite (MgO = 13-14 wt %) with an ultimate saturation of SiO2 (49-50 wt %), a high H2O content (2.2-2.9%), and incompatible elements (Sr, Rb, Ba, Hf). This melt is formed at pressures of 15-20 kbar and temperatures of 1280--1320С . Its further crystallization proceeds in intermediate magma chambers at two discrete pressure levels (i.e., greater than 6, and 1-2 kbar). The results of the petrological studies are in good agreement with the seismotomographic model.

Поступила в редакцию 1. 11. 2006 г.
Методом сейсмической томографии построена объемная скоростная модель земной коры под Ключевской группой вулканов. Выделены аномалии скоростных параметров связанных с зонами магматического питания активных вулканов. Получены петрологические данные о составе, температуре и давлении генерации и кристаллизации родоначальных расплавов магнезиальных базальтов Ключевского вулкана. Родоначальный расплав отвечает пикриту (MgO=13-14%,мас) с предельным насыщением SiO2 (49-50%, мас.), высоким содержанием H2O (2,2-2.9%) и несовместимыми элементами (Sr, Rb, Ba, Hf). Он образуется при давлениях 15-20 кбар и температурах 1280-13200С. Его дальнейшая кристаллизация проходит в промежуточных магматических камерах при двух дискретных уровнях давлений (более 6 и 1-2 кбар). Результаты петрологических исследований находятся в хорошем соответствии с сейсмотомографической моделью.
Lees J., Symons N., Chubarova O., Gorelchik V., Ozerov A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 293-302.    Annotation
Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group.
Maximov A.P., Puzankov M.Yu., Bazanova L.I. The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) // XXIV IUGG General Assembly. July 2-13, 2007, Perugia, Italy. 2007.


Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.