Main BibliographyПо дате публикаций
 
 Bibliography
Volcano:

 
Jump to:
Records: 2138
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 2007
Khubunaya S.A., Gontovaya L.I., Sobolev A.V., Nizkous I.V. Magma Chambers beneath the Klyuchevskoy Volcanic Group // Journal of Volcanology and Seismology. 2007. V. 1. № 2. P. 98-118. doi: 0.1134/S0742046307020029.    Annotation
A 3D velocity model of the Earth's crust beneath the Klyuchevskoy volcanic group has been constructed using the seismic tomography method. Anomalies of the velocity parameters related to the zones of magma supply to active volcanoes have been distinguished. Petrological data on the composition, temperature, and pressure of generation and crystallization of primary melts of Klyuchevskoy volcano magnesian basalts have been obtained. The primary melt corresponds to picrite (MgO = 13-14 wt %) with an ultimate saturation of SiO2 (49-50 wt %), a high H2O content (2.2-2.9%), and incompatible elements (Sr, Rb, Ba, Hf). This melt is formed at pressures of 15-20 kbar and temperatures of 1280--1320С . Its further crystallization proceeds in intermediate magma chambers at two discrete pressure levels (i.e., greater than 6, and 1-2 kbar). The results of the petrological studies are in good agreement with the seismotomographic model.

Поступила в редакцию 1. 11. 2006 г.
Методом сейсмической томографии построена объемная скоростная модель земной коры под Ключевской группой вулканов. Выделены аномалии скоростных параметров связанных с зонами магматического питания активных вулканов. Получены петрологические данные о составе, температуре и давлении генерации и кристаллизации родоначальных расплавов магнезиальных базальтов Ключевского вулкана. Родоначальный расплав отвечает пикриту (MgO=13-14%,мас) с предельным насыщением SiO2 (49-50%, мас.), высоким содержанием H2O (2,2-2.9%) и несовместимыми элементами (Sr, Rb, Ba, Hf). Он образуется при давлениях 15-20 кбар и температурах 1280-13200С. Его дальнейшая кристаллизация проходит в промежуточных магматических камерах при двух дискретных уровнях давлений (более 6 и 1-2 кбар). Результаты петрологических исследований находятся в хорошем соответствии с сейсмотомографической моделью.
Lees J., Symons N., Chubarova O., Gorelchik V., Ozerov A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 293-302.    Annotation
Three-dimensional structural images of the P-wave velocity below the edifice of the great Klyuchevskoy group of volcanoes in central Kamchatka are derived via tomographic inversion. The structures show a distinct low velocity feature extending from around 20 km depth to 35 km depth, indicating evidence of magma ponding near the Moho discontinuity. The extensive low velocity feature represents, at least to some degree, the source of the large volume of magma currently erupting at the surface near the Klyuchevskoy group.
Maximov A.P., Puzankov M.Yu., Bazanova L.I. The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) // XXIV IUGG General Assembly. July 2-13, 2007, Perugia, Italy. 2007.
Neal C.A., Girina O.A., Senyukov S.L., Rybin A.V., Osiensky J., Hall T., Nelson K., Izbekov P. Eruption warning systems for aviation in Russia: a 2007 status report // 4th International Workshop on Volcanic Ash. Natural Hazards. New Zealand. 2007. 2007. P. 1-7.
Ozerov A.Yu. Experimental Studies for Modeling the Explosions of Basaltic Volcanoes // Volcanism and Subduction: The Kamchatka Region. // AGU Fall Meeting 2007. Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstracts. 2007. P. V12B-04.
Ozerov A.Yu., Firstov P.P., Gavrilov V.A. Periodicities in the dynamics of eruptions of Klyuchevskoi Volcano, Kamchatka // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 283-291.    Annotation
Detailed studies of volcanic tremor envelopes with frequencies ranging from 5.5⋅10-6 to 2.5⋅10-2 Hz (50 hrs - 40 sec), recorded during the Klyuchevskoi volcano eruptions of 1983 and 1984, revealed five major frequencies: 1.1⋅10-2 Hz (T1 = 1 min 34 sec), 2.5⋅10-3 Hz (T2 = 6 min 10 sec), 4.2⋅10-4 Hz (T3 = 40 min), 5.1⋅10-5 Hz (T4 = 5 hrs 30 min), 7.7⋅10-6 Hz (T5 = 36 hrs), as well as superpositions of their harmonics. In the 1993 eruption, fluctuations in the volcanic tremor envelopes have frequencies of TI = 2 hrs 48 min and TII = 6 hrs 12 min, which correspond to periodicities in the dynamics of eruptions identified by visual observations since 1932. The distribution of peak amplitudes has been found to vary in relation to eruption intensity—increasing eruption strength correlates with an increase in the amplitude of low frequency peaks, and vice versa. It is concluded that volcanic tremor allows monitoring of eruption dynamics. Possible reasons for the occurrence of periodicities are discussed, but a comprehensive model for this phenomenon has not yet been developed.
Ponomareva V., Kyle P., Pevzner M., Sulerzhitsky L., Hartman M. Holocene eruptive history of Shiveluch Volcano, Kamchatka Peninsula, Russia // Geophysical Monograph Series. // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 263-282. № doi:10.1029/172GM19.    Annotation
The Holocene eruptive history of Shiveluch volcano, Kamchatka Peninsula, has been reconstructed using geologic mapping, tephrochronology, radiocarbon dating, XRF and microprobe analyses. Eruptions of Shiveluch during the Holocene have occurred with irregular repose times alternating between periods of explosive activity and dome growth. The most intense volcanism, with frequent large and moderate eruptions occurred around 6500–6400 BC, 2250–2000 BC, and 50–650 AD, coincides with the all-Kamchatka peaks of volcanic activity. The current active period started around 900 BC; since then the large and moderate eruptions has been following each other in 50–400 yrs-long intervals. This persistent strong activity can be matched only by the early Holocene one.
Most Shiveluch eruptions during the Holocene produced medium-K, hornblendebearing andesitic material characterized by high MgO (2.3–6.8 wt %), Cr (47–520 ppm), Ni (18–106 ppm) and Sr (471–615 ppm), and low Y (> 18 ppm). Only two mafic tephras erupted about 6500 and 2000 BC, each within the period of most intense activity.
Many past eruptions from Shiveluch were larger and far more hazardous then the historical ones. The largest Holocene eruption occurred ∼1050 AD and yielded >2.5 km3 of tephra. More than 10 debris avalanches took place only in the second half of the Holocene. Extent of Shiveluch tephra falls exceeded 350 km; travel distance of pyroclastic density currents was > 22 km, and that of the debris avalanches ≤20 km.
Ponomareva V.V., Churikova T., Melekestsev I.V., Braitseva O.A., Pevzner M., Sulerzhitskii L. Late Pleistocene - Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 165-198. № 10.1029/172GM15.    Annotation
Late Pleistocene-Holocene volcanism in Kamchatka results from the subduction of the
Pacific Plate under the peninsula and forms three volcanic belts arranged in en echelon manner
from southeast to northwest. The cross-arc extent of recent volcanism exceeds 250 km and
is one of the widest worldwide. All the belts are dominated by mafic rocks. Eruptives with
SiO2>57% constitute ~25% of the most productive Central Kamchatka Depression belt and
~30% of the Eastern volcanic front, but <10% of the least productive Sredinny Range belt.
All the Kamchatka volcanic rocks exhibit typical arc-type signatures and are represented
by basalt-rhyolite series differing in alkalis. Typical Kamchatka arc basalts display a strong
increase in LILE, LREE and HFSE from the front to the back-arc. La/Yb and Nb/Zr increase
from the arc front to the back arc while B/Li and As, Sb, B, Cl and S concentrations decrease.
The initial mantle source below Kamchatka ranges from N-MORB-like in the volcanic front
and Central Kamchatka Depression to more enriched in the back arc. Rocks from the Central
Kamchatka Depression range in 87Sr/86Sr ratios from 0.70334 to 0.70366, but have almost
constant Nd isotopic ratios (143Nd/144Nd 0.51307–0.51312). This correlates with the highest
U/Th ratios in these rocks and suggest the highest fluid-flux in the source region.
Holocene large eruptions and eruptive histories of individual Holocene volcanoes have been
studied with the help of tephrochronology and 14C dating that permits analysis of time-space
patterns of volcanic activity, evolution of the erupted products, and volcanic hazards.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. 2007. V. 255. № 1-2. P. 53-69. doi: 10.1016/j.epsl.2006.12.005.    Annotation
New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel, Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc // Earth and Planetary Science Letters. 2007. Т. 255. № 1-2. С. 53-69. doi:10.1016/j.epsl.2006.12.005.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru