Bibliography
Volcano:
Group by:  
Jump to:
Records: 2283
 2009
Чурикова Т.Г., Гордейчик Б.Н., Лебедев И.А., Грибань А.А., Иванов Б.В., Максимов А.П. Магматическая эволюция вулкана Камень (Камчатка) // Вулканизм, биосфера и экологические проблемы. Пятая международная научная конференция. 2009, Майкоп – Туапсе. 2009. С. 52-53.
Шерышева Н.Г., Осипов Г.А., Лупикина Е.Г. Характеристика донного микробного сообщества озера Карымского (Восточная Камчатка) с применением метода газовой хромато-масс-спектрометриии // Сохранение биоразнообразия Камчатки и прилегающих морей: Материалы XI международной конференции, Петропавловск-Камчатский. Камчатпресс. 2009. С. 77-81.
Широков В.А., Степанов И.И., Дубровская И.К. Изучение сейсмического отклика действующих вулканов Корякского и Ключевского (Камчатка) на заключительной стадии подготовки сильных мировых тектонических землетрясений по данным наблюдений 2008-2009 гг. // Вестник КРАУНЦ. Серия: Науки о Земле. 2009. Вып. 14. № 2. С. 118-129.    Annotation
Впервые на примере действующих камчатских вулканов Корякского и Ключевского исследовалась связь во времени вулканических землетрясений (ВЗ) и сильных мировых тектонических землетрясений (ТЗ) с магнитудой Мw ≥ 6.3 на заключительной, менее недели, стадии их подготовки, независимо от места возникновения ТЗ и их глубины. Показано, что в 2009 г. частота возникновения ВЗ Корякского вулкана за трое суток до мировых ТЗ в целом была аномально высокой. В 12 случаях из 18 ВЗ за трое суток до ТЗ сигнализировали о готовящихся в мире сильных сейсмических событиях. В 2008-2009 гг. подобные эффекты, характерные также для Ключевского вулкана, в комплексе с другими предвестниковыми аномалиями, в том числе с использованием данных деформационных наблюдений, успешно использовались в реальном времени для прогноза сильных мировых ТЗ со временем упреждения до шести суток.

This is the first paper presenting the case study for the active Koryaksky and Klyuchevskoy Volcanoes that shows the temporal relationship between the volcanic earthquakes (the volcanic EQ) and strong tectonic earthquakes (the tectonic EQ) in the world with Мw ≥ 6.3 at the final stage (less than a week) of their preparation (regardless the epicenters and depths of the tectonic EQ). The article shows that in 2009 the volcanic EQ at Koryaksky Volcano occurred 3 days prior to the tectonic EQ in the world and their number was in general anomalously high. 12 of 18 volcanic EQ alerted about the strong world events 3 days prior to the tectonic EQ. In 2008-2009 such effects typical for Klyuchevskoy Volcano as well, were used along with the other forecasting anomalies (including the deformation monitoring) for real-time forecast of the strong tectonic EQ in the world with the delay time equal to 6 days.
 2008
Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Yu.V. ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia // Remote Sensing of Environment. 2008. V. 112. P. 2569-2577. https://doi.org/10.1016/j.rse.2007.12.001.    Annotation
An explosive eruption occurred at Bezymianny Volcano (Kamchatka Peninsula, Russia) on 24 December 2006 at 09:17 (UTC). Seismicity
increased three weeks prior to the large eruption, which produced a 12–15 km above sea level (ASL) ash column. We present field observations from 27 December 2006 and 2 March 2007, combined with satellite data collected from 8 October 2006 to 11 April 2007 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as part of the instrument's rapid-response program to volcanic eruptions. Pixel-integrated brightness temperatures were calculated from both ASTER 90 m/pixel thermal infrared (TIR) data as well as 30 m/pixel shortwave infrared (SWIR) data. Four days prior to the eruption, the maximum TIR temperature was 45 °C above the average background temperature (−33 °C) at the dome, which we interpret was a precursory signal, and had dropped to 8 °C above background by 18 March 2007. On 20 December 2006, there was also a clear thermal signal in the SWIR data of 128 °C using ASTER Band 7 (2.26 μm). The maximum SWIR temperature was 181 °C on the lava dome on 4 January 2007, decreasing below the detection limit of the SWIR data by 11 April 2007. On 4 January 2007 a hot linear feature was observed at the dome in the SWIR data, which produced a maximum temperature of 700 °C for the hot fraction of the pixel using the dual band technique. This suggests that magmatic temperatures were present at the dome at this time, consistent with the emplacement of a new lava lobe following the eruption. The eruption also produced a large, 6.5 km long by up to 425 m wide pyroclastic flow (PF) deposit that was channelled into a valley to the south–southeast. The PF deposit cooled over the following three months but remained elevated above the average background temperature. A second field investigation in March 2007 revealed a still-warm PF deposit that contained fumaroles. It was also observed that the upper dome morphology had changed in the past year, with a new lava lobe having in-filled the crater that formed following the 9 May 2006 eruption. These data provide further information on effusive and explosive activity at Bezymianny using quantitative remote sensing data and reinforced by field observations to assist in pre-eruption detection as well as post-eruption monitoring.
Carter A.J., Ramsey M.S., Girina O.A., Belousov A.B., Durant A., Skilling I., Wolfe A. Spaceborne and field-based observations of Bezymianny Volcano, Kamchatka from 2000-2008 // Abstracts. AGU Fall Meeting, 14-19 December. San-Francisco, USA: AGU. 2008. № V43A-2140.
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Gorely volcano (Southern Kamchatka) - petrochemical characteristics of magmatic evolutional series // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 50
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Magmatic melts evolution at Gorely volcano (Southern Kamchatka) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Maksimov A.P. A Physicochemical Model for Deep Degassing of Water-Rich Magma // Journal of Volcanology and Seismology. 2008. V. 2. № 5. P. 356-363. doi: 10.1134/S0742046308050059.    Annotation
Two powerful eruptions of Quizapu vent on Cerro Azul Volcano, Chile are used as examples to discuss
the problem of effusive eruptions of magmas having high preeruptive volatile concentrations. A physicochemical
mechanism is proposed for magma degassing, with the volatiles being lost before coming to the surface.
The model is based on the interaction of magmas residing in chambers at different depths and on the difference
between the solubility of water in the melt and the water equilibrium concentration in a magma body
having a considerable vertical extent. The shallower chamber can accumulate the volatiles released from the
magma that is supplied from the deeper chamber. An explanation is provided of the dramatic differences in the
character of the 1846–1847 and 1932 eruptions, which had identical chemical–petrographic magma compositions.

На примере двух мощных извержений конуса Квицапу вулкана Сьерро-Ассуль (Чили) рассматривается проблема эффузивных извержений магм с высокими предэруптивными содержаниями летучих. Предложен физико-химический механизм дегазации магм с потерей ими летучих до появления на поверхности. Модель основана на взаимодействии магм, находившихся в разных по глубине очагах, и различии между растворимостью воды в расплаве и ее равновесной концентрацией в протяженном по вертикали магматическом теле. При этом малоглубинный очаг может аккумулировать летучие, выделяющиеся из магмы, поступающей в него из глубинного очага. Дается объяснение резких различий в характере извержений 1846–1847 и 1932 г. при идентичном химико-петрографическом составе магм.
Ozerov A. Gas-hydrodynamic model of basalt explosions (based on experimental data) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Ozerov A. Types and Mechanisms of Basaltic Explosions: Environmental Observations and Experimental Data // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 7



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru