Main BibliographyПо названиям
 
 Bibliography
Volcano:

 
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2093
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 Г
Гиперспектральные спутниковые данные информационной системы VolSatView для изучения продуктов извержений вулканов Камчатки (2015)
Гордеев Е.И., Гирина О.А., Лупян Е.А. , Кашницкий А.В., Уваров И.А., Ефремов В.Ю., Сорокин А.А., Верхотуров А.Л., Мельников Д.В., Маневич А.Г., Романова И.М., Крамарева Л.С., Королев С.П. Гиперспектральные спутниковые данные информационной системы VolSatView для изучения продуктов извержений вулканов Камчатки // Тринадцатая Всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса". Тезисы конференции. Москва: ИКИ РАН. 2015. С. 347
Главные этапы и геологический эффект новейшего вулканизма Курило-Камчатской зоны (1976)
Кожемяка Н.Н., Огородов Н.В., Мелекесцев И.В. Главные этапы и геологический эффект новейшего вулканизма Курило-Камчатской зоны // Советско-японский (третий) симпозиум по геодинамике и вулканизму зоны перехода от Азиатского континента к Тихому океану, г. Южно-Сахалинск, 2-7 октября 1976 г.: тезисы. 1976. Вып. 2. С. 35
Главный и побочные кратеры Ключевского вулкана в 1966-1968 гг. (1970)
Кирсанов И.Т., Серафимова Е.К., Марков И.А. Главный и побочные кратеры Ключевского вулкана в 1966-1968 гг. // Бюллетень вулканологических станций. 1970. № 46. С. 33-41.
Глобальные закономерности формирования изотопного состава (δ18О, δD) грязевулканических вод (2017)
Никитенко О.А., Ершов В.В. Глобальные закономерности формирования изотопного состава (δ18О, δD) грязевулканических вод // Вестник КРАУНЦ. Серия: Науки о Земле. 2017. Вып. 34. № 2. С. 49-60.    Annotation
Работа посвящена анализу общемировых данных об изотопном составе вод ~120 наземных грязевых вулканов мира. Эмпирическая плотность распределения для δ18О является бимодальной, наиболее часто встречаются значения из интервалов (+1; +2)‰ и (+5; +6)‰. Эмпирическая плотность распределения для δD является асимметричной с максимумом в интервале (−15; −10)‰. Угловой коэффициент средней линии изотопного состава на диаграмме δ18О−δD близок к единице. Предполагается, что разнообразие изотопного состава сопочных вод определяется в основном двумя процессами ― смешением исходных морских вод с водами, образующимися при дегидратации глинистых минералов, и разбавлением метеорными водами. Первый процесс происходит преимущественно в геологическом прошлом на этапе формирования грязевулканических очагов, второй процесс ― на современном этапе грязевулканической деятельности.

The paper describes the analysis of global data on the isotopic composition of waters from about 120 world surface mud volcanoes. Frequency distribution for δ18O is bimodal, the most frequent values lie within the intervals (+1; +2)‰ and (+5; +6)‰. Frequency distribution for δD is asymmetric with a maximum lying within the range (−15; −10)‰. Midline angle factor of isotopic composition on the δ18O−δD diagram is close to 1. The authors suppose that the variety of isotopic composition of the mud volcanic waters is determined mainly by two processes: mixing of initial seawater with water formed during the dehydration of clay minerals and dilution by meteoric waters. The first process occurred predominantly on the stage of formation of mud volcanoes in the geological past, while the second process occurs on the modern stage of activity of mud volcanoes.
Глобальные особенности петрохимии вулканических пород и основные структуры Земли (1963)
Горшков Г.С. Глобальные особенности петрохимии вулканических пород и основные структуры Земли // Петрохимические особенности молодого вулканизма. 1963. С. 5-16.
Глубинная модель литосферы в районе Ключевской группы вулканов (Камчатка) (2004)
Гонтовая Л.И., Хренов А.П., Степанова М.Ю., Сенюков С.Л. Глубинная модель литосферы в районе Ключевской группы вулканов (Камчатка) // Вулканология и сейсмология. 2004. № 3. С. 3-10.    Annotation
Восстановлена скоростная структура литосферы в области сочленения Курило-Камчатской и Алеутской островных дуг по временам вступлений продольных (Р) и поперечных (S) волн от региональных и вулкано-тектонических землетрясений посредством алгоритма последовательного вычитания аномалий. Охарактеризованы особенности глубинных скоростных неоднородностей на различных уровнях литосферы, их взаимосвязь с тектоникой и сейсмичностью. Показана приуроченность глубинного источника магматического питания Ключевской группы вулканов к стыку глубинных разломов мантийного заложения (в плане он приурочен к повороту русла р. Камчатки на восток). Корни этой неоднородности, вероятно, уходят в астеносферу. Скоростная структура земной коры под Ключевским вулканом совместно с данными других геолого-геофизических методов (ГСЗ, МОВ, электромагнитных исследований, линеаментного анализа и др.) позволяет представить модель и общую схему протекающих здесь тектоно-магматических процессов.

A velocity structure of the lithosphere has been determined in the junction area of the Kuril-Kamchatka and Aleutian island arcs based on travel times of compressional (P) and shear (S) waves excited by regional and volcanotectonic earthquakes using the algorithm of successive anomaly subtraction. We describe deep-seated velocity heterogeneities at different depths in the lithosphere, their relation to tectonics and to seismicity. It is shown that the deep-seated source of magma supply for the Klyuchevskoi volcanic cluster is confined to a junction of deep-seated mantle faults (in map view this occurs at the location where the Kamchatka R. streambed turns eastward). The heterogeneity in question probably has asthenospheric roots. The crustal velocity structure beneath Klyuchevskoi Volcano together with data provided by other geological and geophysical methods (deep seismic sounding, electromagnetic methods, lineament analysis etc.) provides an idea of the model and of a general view of the tectonomagmatic processes going on there.
Глубинное строение Карымского вулкана на Камчатке и некоторые вопросы генезиса кальдер (1971)
Зубин М.И., Иванов Б.В., Штейнберг Г.С. Глубинное строение Карымского вулкана на Камчатке и некоторые вопросы генезиса кальдер // Геология и геофизика. 1971. № 1. С. 73-81.
Глубинное строение некоторых кальдер Камчатки по гравиметрическим данным (1969)
Зубин М.И. Глубинное строение некоторых кальдер Камчатки по гравиметрическим данным // Материалы Первой городской конференции молодых ученых и специалистов (ноябрь 1967г.). Петропавловск-Камчатский: Дальневост. кн. изд-во. 1969. С. 13-14.
Глубинное строение района Авачинско-Корякской группы вулканов на Камчатке (2003)
Мороз Ю.Ф., Гонтовая Л.И. Глубинное строение района Авачинско-Корякской группы вулканов на Камчатке // Вулканология и сейсмология. 2003. № 4. С. 3-10.    Annotation
Приводятся результаты гравиметрических, сейсмических и электромагнитных исследований. Выявлены основные особенности глубинного строения района. Создана комплексная геолого-геофизическая модель земной коры под Авачинским вулканом. Она включает коровый магматический очаг на глубине ~15-25 км, перекрывающую его интрузию и периферический очаг под конусом вулкана на глубине ~0-2 км, а также зону, насыщенную жидкими флюидами в Авачинском грабене. Рассмотрены возможные геодинамические процессы, протекающие в земной коре в настоящее время. Важная роль отводится коровой проницаемой зоне, содержащей флюиды. Даны рекомендации для бурения глубокой скважины в районе Авачинского грабена с целью поисков геотермального месторождения.

Results are presented from gravity, seismic and electromagnetic studies. Main features of the deep structure of the area have been identified. A multidisciplinary geologic-geophysical model has been developed for the crust beneath Avacha Volcano. The model involves a crustal magma chamber at a depth of about 15-25 km, an intrusion that overlies it, and a peripheral chamber under the volcanic cone at 0-2 km depth, as well as a fluid-saturated zone in the Avacha Graben. We discuss possible geodynamic processes that are going on in the crust at present. Importance is attached to the fluid-containing crustal permeable zone. Recommendations are provided for drilling a deep well in the Avacha Graben area to search for a geothermal field.
Глубинное строение района извержения (1984)
Балеста С.Т., Зубин М.И., Каргопольцев А.А., Федорченко И.А. Глубинное строение района извержения // Большое трещинное Толбачинское извержение. Камчатка. 1975-1976. 1984. С. 514-537.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru