Главная Вулканы Безымянный


Без названия 8 Камень
Вулкан Безымянный. Библиография

Количество записей: 329
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Alidibirov M.A., Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A., Belousov A.B., Zhdanova E.Yu., Malyshev A.I. The 1985 eruption of Bezymianny // Volcanology and Seismology. 1990. V. 10. № 6. P. 839-863.
Almeev R.R., Ariskin A.A., Ozerov A.Yu., Kononkova N.N. Problems of the Stoichiometry and Thermobarometry of Magmatic Amphiboles: An Example of Hornblende from the Andesites of Bezymyannyi Volcano, Eastern Kamchatka // Geochemistry International. 2002. V. 40. № 8. P. 723-738.
http://repo.kscnet.ru/3471/ [связанный ресурс]
Almeev R.R., Kimura J.I., Ariskin A.A., Ozerov A.Yu. Fractionation history recorded in phenocrysts: LA-ICPMS study of clinopyroxenes from Klyuchevskoy and Bezymianny volcanoes, Kamchatka // Berichte der Deutchen Mineralogischen Gesellschaft (N1). DMG-2006 Hannover, Germany, 25-27 September 2006. 2006. P. 8
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A. Geochemical evidences of the genetic relationships between basalts of Klyuchevskoy and andesites of Bezymyanny volcanoes // The Japan Earth and Planetary Science Joint Meeting: Tokyo, Japan. 2002. P. K080-P003.
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A., Barmina G.S. From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka // Goldschmidt Conference Abstracts 2003. 2003. P. A13
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A., Barmina G.S. Geochemistry of Bezymianny volcano lavas: signatures of a mantle precursor and magma fractionation // Geophysical Research Abstracts. 2004. V. 6. P. 04913
Almeev R.R., Ozerov A.Yu., Ariskin A.A., Kimura J.I. The role of hornblende fractionation in the generation of andesitic lavas of Bezymyanny volcano, Kamchatka: phase equilibria analysis // The Japan Earth and Planetary Science Joint Meeting: Tokyo, Japan. 2002. P. K080-P004.
Almeev Renat R., Kimura Jun-Ichi, Ariskin Alexei A., Ozerov Alexey Yu. Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 141 - 171. doi: 10.1016/j.jvolgeores.2013.01.003.    Аннотация
We present a new dataset for whole-rock major, trace, isotopic, and phenocryst compositions indicating a genetic link between andesites of the Holocene eruptions of the Bezymianny stratovolcano (the Bezymianny stage), the andesitic to dacitic Late Pleistocene lava dome complex (the pre-Bezymianny stage), and the magnesian to high-alumina basalts of the adjacent Kliuchevskoi Volcano. We demonstrate that volcanic products from the Bezymianny stage of volcano evolution are most likely the products of magma mixing between silicic products of the earliest stages of magma fractionation and the less evolved basaltic andesite parental melts periodically injected into the magma reservoir. In contrast, the intermediate and silicic magmas of the pre-Bezymianny stage together with basalts from Kliuchevskoi much more closely resemble the liquid line of descent and may represent a unique prolonged and continuous calc-alkaline trend of magma evolution from high-magnesian basalt to dacite. As a result of the geothermobarometry, we recognize variable conditions of magma fractionation and magma storage beneath Bezymianny for different magma types during its evolution since the Late Pleistocene: (1) 1100–1150 °C, 500–640 MPa, 1–2.5 wt. H2O for parental basaltic andesite; (2) 1130–1050 °C, 700–600 MPa, 2.5–5 wt. H2O for two-pyroxene andesites; (3) 1040–990 °C, 560–470 MPa, 5–6.5 wt. H2O for orthopyroxene-bearing andesites; (4) 950–1000 °C, 450–150 MPa, 3.5–5.5 wt. H2O for hornblende-bearing andesites; and (5) 950–900 °C, 410–250 MPa, 6–7 wt. H2O for dacites. Repeated basalt injections and magma fractionation combined with internal mixing in the magma chamber are the main processes responsible for both the complex petrography and the geochemical trends observed in the lavas of Bezymianny Volcano.
Belousov Alexander Deposits of the 30 March 1956 directed blast at Bezymianny volcano, Kamchatka, Russia // Bulletin of Volcanology. 1996. V. 57. № 8. P. 649-662. doi:10.1007/s004450050118.
Belousov Alexander, Belousova Marina Large scale landslides on active volcanoes in the 20th century - Examples from the Kurile-Kamchatka region (Russia) // Landslides = Glissements de terrain : proceedings of the Seventh International Symposium on Landslides, 17 - 21 June 1996, Trondheim. Rotterdam: Balkema. 1996. V. 3. P. 953-957.
Belousov Alexander, Voight Barry, Belousova Marina Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits // Bulletin of Volcanology. 2007. V. 69. № 7. P. 701-740. doi:10.1007/s00445-006-0109-y.
Belousov Alexander, Voight Barry, Belousova Marina, Petukhin Anatoly Pyroclastic surges and flows from the 8-10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia // Bulletin of Volcanology. 2002. V. 64. № 7. P. 455-471. doi:10.1007/s00445-002-0222-5.
Bogoyavlenskaya G.E., Braitseva O.A., Melekestsev I.V., Kirianov V.Yu., Dan Miller C. Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes // Journal of Geodynamics. 1985. V. 3. № 3-4. P. 189-218. doi:10.1016/0264-3707(85)90035-3.    Аннотация
This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955–1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (10^17−10^18 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less.
The heat energy of all three eruptions is comparable: 1.3 × 10^18, 3.8−4.8 × 10^18 and 1 × 10^17 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively.
Bogoyavlenskaya G.E., Girina O.A. Bezymianny volcano: 50 years of activity // Abstracts. 5rd Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP-5). 2006. P. 129 doi: P 601.
Bogoyavlenskaya G.E., Girina O.A. Discriminations in Generation of pyroclastic deposit types from andesitic volcanoes of Kamchatka (in the Bezymianny volcano case) // IUGG. XXI General Assembly. Colorado. 1995. P. B 410
Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A. Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits // SEAN Bulletin. 1986. № 4. P. 15-20.
Bogoyavlenskaya G.E., Naumov V.B., Tolstykh M.L., Ozerov A.Yu., Khubunaya S.A. Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) // Abstracts of IAVCEI General Assembly, 18-22 July 2000. Bali, Indonesia. 2000. P. 87
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskii L.D. The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bulletin of Volcanology. 1995. V. 57. № 6. P. 383-402. doi: 10.1007/BF00300984.    Аннотация
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.
Braitseva O.A., Sulerzhitsky L.D., Litasova S.N., Melekestsev I.V., Ponomareva V.V. Radiocarbon dating and tephrochronology in Kamchatka // Radiocarbon. 1993. V. 35. № 3. P. 463-476.    Аннотация
We discuss results of 14C dates obtained from areas of young volcanoes in Kamchatka. We apply these dates to reconstructing regional volcanic activity during the Holocene.
Braitseva Olga A., Ponomareva Vera V., Sulerzhitsky Leopold D., Melekestsev Ivan V., Bailey John Holocene Key-Marker Tephra Layers in Kamchatka, Russia // Quaternary Research. 1997. V. 47. № 2. P. 125-139. doi:10.1006/qres.1996.1876.    Аннотация
Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in 14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2019. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru