Вулкан Ключевской. Библиография
Группировать:  
Записей: 508
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. 2007. Vol. 255. № 1-2. P. 53-69. doi: 10.1016/j.epsl.2006.12.005.
   Аннотация
New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel, Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc // Earth and Planetary Science Letters. 2007. Т. 255. № 1-2. С. 53-69. doi:10.1016/j.epsl.2006.12.005.
Portnyagin Maxim, Ponomareva Vera Kliuchevskoi volcano diary // International Journal of Earth Sciences. 2012. Vol. 101. № 1. P. 195 doi:10.1007/s00531-011-0710-y.
   Аннотация
Numerous ash layers deposited at the slopes of Kliuchevskoi volcano provide a detailed and continuous record of its explosive activity during the last ca. 10,000 years.
Portnyagin Maxim, Ponomareva Vera, Bindeman Ilya, Bogaard Christel, Krasheninnikov Stepan, Bergal-Kuvikas Olga, Mironov Nikita, Plechova Anastasia, Hoernle Kaj Millennium-scale major element variations of Klyuchevskoy volcano magmas (Kamchatka) revealed from high-resolution study of tephra deposits // IAVCEI, Reykjavik. 2008.
Roman Alberto, Bergal-Kuvikas Olga, Shapiro Nikolay M., Gordeev E.I., Taisne Benoit, Jaupart Claude Control on the organization of the plumbing system of subduction volcanoes: the role of volatiles and edifice load // AGU Fall Meeting Abstracts. 2017.
Shirokov V.A. Some Procedural Aspects of Comprehensive Prediction of Flank Eruptions of Klyuchevskoi Volcano (Kamchatka) // Volcanology and Seismology. 1989. Vol. 7. № 6. P. 921-942.
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.
   Аннотация
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
Slezin Yu.B. The morphology and rheology of modern Klyuchevskoi parasitic lava flows // Volcanology and Seismology. 1990. Vol. 10. Vol. 5. P. 665-686.
Taran Yu.A., Rozhkov A.M., Serafimova E.K., Esikov A.D. Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 1991. Vol. 46. № 3–4. P. 255 - 263. doi: 10.1016/0377-0273(91)90087-G.
   Аннотация
Gas samples have been collected at the place of magma effusion during the 1988 flank eruption of Klyuchevskoy, for the first time in the course of studies at this volcano. The high-temperature gases (1000–1100°C) are rich in water and halogens but depleted in sulphur. Their molar composition is close to chemical equilibrium at the collection temperature, while their oxidation state corresponds to redox conditions between FMO and NNO buffers. The isotopic composition of the water (δD = −71 to −44‰; δ18O = +6.3 to +8.4‰, versus SMOW) plots within the field of “primary magmatic” waters. The isotopic composition of H2 (δD = −187‰ to −160‰) is consistent with isotopic equilibrium between H2 and H2O in the conditions of emission. Both the chemistry of the gases and the low δ13C of carbon dioxide (−11.6‰, PDB) suggest extensive magma outgassing occurred during the course of the eruption.
Tokarev P.I. Prediction of the Klyuchevskoi Parasitic Eruption in March 1983 // Volcanology and Seismology. 1983. № 5. P. 491-496.