Bezymianny Volcano. Bibliography
Group by:  
Records: 427
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Girina O.A. Pyroclastic deposits of the Bezymianny eruption in October 1984 // Volcanology and Seismology. 1991. Vol. 12. № 3. P. 407-417.
Girina O.A. Pyroclastic deposits of the different stages the Bezymianny volcano activity // The ’95 International workshop on volcanoes commemorating the 5-th anniversary of Mt. Showa-Shinzan. 1995. P. P 43
Girina O.A. Pyroclastic surge deposits of Bezymianny volcano // IUGG. XXI General Assembly. Colorado. 1995. P. B 419
Girina O.A. Pyroclastic surge deposits of Bezymianny volcano // Volcanology and Seismology. 1997. Vol. 18. № 5. P. 547-560.
Girina O.A., Bogoyavlenskaya G.E., Demyanchuk Yu.V. Bezymianny eruption of August 02, 1989 // Volcanology and Seismology. 1993. Vol. 15. № 2. P. 135-144.
Girina O.A., Bursik M.I. The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano V52B-02. // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000.
Girina O.A., Bursik M.I. The Movement of Block and Ash Flows in Channels // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000. № V52B-0.
Girina O.A., Carter A.J. 2006-2008 Eruptions of Bezymianny Volcano // Mitigating natural hazards in active arc environments. Abstracts. 6rd Biennial Workshop on Japan- Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks. June 22-26. 2009. С. 75
Girina O.A., Gorbach N.V., Davydova V.O., Melnikov D.V., Manevich T.M, Manevich A.G., Demyanchuk Yu.V. The 15 March 2019 Bezymianny Volcano Explosive Eruption and Its Products // Journal of Volcanology and Seismology. 2020. Vol. 14. № 6. P. 394-409. https://doi.org/10.1134/S0742046320060032.
   Annotation
Bezymianny Volcano is one of the most active volcanoes in Kamchatka and in the world. This paper describes the preparation, behavior, products, dynamics, and the geological effect of the March 15, 2019 explosive eruption of the volcano, which was predicted 6.5 h before it began. The sequence of eruptive events was analyzed using data provided by video and satellite-based monitoring of the volcano; the quantitative characteristics for the distribution of pyroclastic deposits were obtained in the information system “Remote Monitoring of Activity of Volcanoes in Kamchatka and the Kurile Islands”. The explosions lifted ash to heights of 15 km above sea level (up to 12 km above the volcano), the eruptive cloud was moving northeastward and east from the volcano, the main ashfall area was 210 400 km2, including 15 000 km2 on land. Apart from tephra, the eruption produced pyroclastic flows and pyroclastic surges covering an area of 30 km2. The total volume of explosive products is estimated as 0.1–0.2 km3. The eruptive rocks are calc-alkaline moderate-K basaltic andesites (SiO2 = 54.84–56.29 wt %), they are the most mafic among all rocks of the current Bezymianny eruption cycle.
Girina O.A., Gordeev E.I., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Romanova I.M. The 25 Anniversary Kamchatkan Volcanic Eruption Response Team // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky, Russia, August 20-26. // 10th Biennual workshop on Japan-Kamchatka-Alaska subduction processes (JKASP-2018). Petropavlovsk-Kamchatsky: IVS FEB RAS. 2018. P. 80-82.