Bezymianny Volcano. Bibliography
Group by:  
Records: 391
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Guschenko I.I. Volcanoes of the World: Eruption Cycles // Volcanology and Seismology. 1988. Vol. 7. № 3. P. 189-218.
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. Vol. 108. № B2. doi:10.1029/2001JB000312.    Annotation
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.
Holocene Volcanoes in Kamchatka. 2002.
Horváth Á, Girina O.A., Carr J.L., Wu D.L., Bril A.A., Mazurov A.A., Melnikov D.V., Hoshyaripour G.A., Buehler S.A. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies // Atmospheric Chemistry and Physics. 2021. Vol. 21. Vol. 16. P. 12207-12226.    Annotation
In a companion paper (Horváth et al., 2021), we introduced a new technique to estimate volcanic eruption column height from extremely oblique near-limb geostationary views. The current paper demonstrates and validates the technique in a number of recent eruptions, ranging from ones with weak columnar plumes to subplinian events with massive umbrella clouds and overshooting tops that penetrate the stratosphere. Due to its purely geometric nature, the new method is shown to be unaffected by the limitations of the traditional brightness temperature method, such as height underestimation in subpixel and semitransparent plumes, ambiguous solutions near the tropopause temperature inversion, or the lack of solutions in undercooled plumes. The side view height estimates were in good agreement with plume heights derived from ground-based video and satellite stereo observations, suggesting they can be a useful complement to established techniques.
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.    Annotation
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.
Ivanov B.V., Chirkov A.M., Dubik Y.M., Khrenov A.P., Dvigalo V.N., Razina A.A., Stepanov V.V., Chubarova O.S. Active Volcanoes of Kamchatka and Kuril Islands: Status in 1982 // Volcanology and Seismology. 1988. Vol. 6. № 4. P. 623-634.
Ivanov B.V., Gavrilenko G.M., Dvigalo V.N., Ovsyannikov A.A., Ozerov A.Yu., Razina A.A., Tokarev P.I., Khrenov A.P., Chirkov A.M. Activity of Volcanoes in Kamchatka and the Kuril Islands in 1983 // Volcanology and Seismology. 1988. Vol. 6. № 6. P. 959-972.
Izbekov P., Eichelberger J., Belousova M., Ozerov A. Post-collapse trends at Bezymianny Volcano, Kamchatka, Russia and the May 6, 2006 eruption // AGU Fall Meeting 2006. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstracts. 2006. P. V11B-0576.
Kirianov V.Yu. Volcanic Ash in Kamchatka as a Source of Potential Hazard to Air Traffic // Volcanic Ash and Aviation Safety: Proc. First Intern. Symp. on Volcanic Ash and Aviation safety. US Geological Survey Bull. US Geological Survey. 1992. Vol. 2047. P. 57-63.
Koulakov Ivan, Gordeev Evgeniy I., Dobretsov Nikolay L., Vernikovsky Valery A., Senyukov Sergey, Jakovlev Andrey, Jaxybulatov Kayrly Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 75 - 91. doi: 10.1016/j.jvolgeores.2012.10.014.    Annotation
We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka, Russia. We consider the time period from 1999 to 2009, which covers several stages of activity of Kluchevskoy and Bezymianny volcanoes. The results are supported by synthetic tests that recover a common 3D model based on data corresponding to different time windows. Throughout the period, we observe a robust feature below 25 km depth with anomalously high Vp/Vs values (up to 2.2). We interpret this feature as a channel bringing deep mantle materials with high fluid and melt content to the bottom of the crust. This mantle channel directly or indirectly determines the activity of all volcanoes of the Kluchevskoy group. In the crust, we model complex structure that varies over time. During the pre-eruptive period, we detected two levels of potential magma storage: one in the middle crust at 10–12 km depth and one close to the surface just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymiyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no strong anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in the stress and deformation states, which cause fracturing and the active transport of fluids. These fluids drive more fracturing in a positive feedback system that ultimately leads to eruption. We envision the magma reservoirs beneath the Kluchevskoy group as sponge-structured volumes that may quickly change the content of the molten phases as fluids pulse rapidly through the system.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.