Bezymianny Volcano. Bibliography
Group by:  
Records: 414
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Maximov A.P. Petrological constraints on the mechanisms of catastrophic explosive eruptions of andesitic and acid magmas // 7 th Biennual Workshop on Japan-Kamchatka-Alaska Subduction Processes: Mitigating Risk Through International Volcano, Earthquake, and Tsunami Science (JKASP-2011). August 25-30, 2011, Petropavlovsk-Kamchatsky. 2011. P. 257-258.
McGimsey R.G., Neal C.A., Girina O.A. 1998 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1033. 2003. 35 p.
In 1998 the Alaska Volcano Observatory responded to eruptive activity or suspect volcanic activity at 7 volcanic centers--Shrub mud, Augustine, Becharof Lake area, Chiginagak, Shishaldin, Akutan, and Korovin.

In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team about the 1998 activity of 4 Russian volcanoes-Sheveluch, Klyuchevskoy, Bezymianny, and Karymsky.
McGimsey R.G., Neal C.A., Girina O.A. 1999 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of The Alaska Volcano Observatory Open-File Report 2004-1033. 2004. 45 p.
McGimsey R.G., Neal C.A., Girina O.A. 2001 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1453. 2004. 53 p.
McGimsey R.G., Neal C.A., Girina O.A. 2003 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2005-1310. 2005. 58 p.
Melnikov D.V., Ushakov S.V., Galle B. Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. 2014.
During the 2012-2013 we have measured SO2 on Kamchatka volcanoes (Gorely, Mutnovsky, Kizimen, Tolbachik, Karymsky, Avachinsky) using DOAS (differential optical absorption spectroscopy). Mobile-DOAS, on a base of USB2000+, has been used as an instrument. The goal of this work was to estimate SO2 emission by Kamchatka volcanoes with the different types of activity. Mutnovsky and Avachinsky during the measurements period passively degassed with SO2 emission ~ 480 t/d and 210 t/d, respectively. Gorely volcano was very active, with intensive vapor-gas activity with gas discharge rate 800-1200 t/d. During the measurements at Karymsky volcano there were relatively weak explosive events (ash plum rose up to 0.5 km above the crater) with 5-10 minutes periodicity. For this time, SO2 discharge rate was ~350-400 t/d. Due to the remoteness and difficulties for accessibility of Kizimen volcano, the measurements were done only once – on October 15th, 2012. 5 traverses have been done above the gas plume. SO2 emission was ~ 700 t/d. On Tolbachik fissure eruption we have measured SO2 emission repeatedly from January until August 2013. The intensive effusion of the lava flows (basaltic andesite by composition) and frequent explosions in the crater of the cinder cone were characteristic features of this eruption. The measured gas emission was from ~1500-2200 t/d in January until 600-800 t/d in August 2013. All measurements were made not permanently, but to the extent possible. Therefore, it is difficult to make detailed conclusions on the SO2 emission on these volcanoes. Nevertheless, this research may become a starting point for the development of the system of the constant monitoring of volcanic gases emission by the active volcanoes of Kamchatka.

Estimation of the sulfur dioxide emission by Kamchatka volcanoes using differential optical absorption spectroscopy.
Moiseenko K.B., Malik N.A. Linear inverse problem for inferring eruption source parameters from sparse ash deposit data as viewed from an atmospheric dispersion modeling perspective // Bulletin of Volcanology. 2019. Vol. 81. № 3. P. 19 doi: 10.1007/s00445-019-1281-1.
Determination of the volcanic eruption source parameters—total grain-size distribution and vertical ash mass distribution (VMD) within the source—is carried out on a collection of measured-area samples and granulometry data. For this, the geophysical inverse methods and Hybrid Particle and Concentration Transport Model (HYPACT) driven by wind and turbulence fields simulated with the Regional Atmospheric Modeling System (RAMS) are used. A two-step inversion procedure is proposed to obtain approximate but physically meaningful solution when the total number of ashfall samples is small and it is not possible to make a good initial guess of the source parameters. First, a spectrum of particle fall velocities is estimated by selecting a best-fit subset of aerodynamically distinct subpopulations of free and aggregate particles from the trial set used to simulate a polycomponent ashfall. The singular value decomposition (SVD) analysis is then employed to identify spatial components of the ash emissions’ vertical distribution, as resolvable by the observations. Model validation experiments are conducted for the January 12, 2011, short-duration vulcanian explosion at Kizimen and paroxysmal phase of the December 24, 2006, sub-Plinian eruption at Bezymianny. The derived VMDs exhibit high variability in fine ash content (~ 60–100 wt%) as well as strong secondary maxima in the lower troposphere, likely reflecting the contribution of ash particles fallen out of co-pyroclastic flow ash clouds and partially collapsing eruption columns.
National Report for the International Association of Volcanology and Chemistry of the Earth’s Interior of the International Union of Geodesy and Geophysics 2011–2014. Presented to the XXVI General Assembly of the IUGG Geoinf. Res. Papers, 3, BS3011. / Ed. Churikova T.G., Gordeychik B.N., Fedotov S.A. Moscow: GCRAS Publ. 2015. 185 p. doi: 10.2205/2015IUGG-RU-IAVCEI.
В данном Национальном отчете представлены основные результаты исследований, проводимых российскими учеными в 2011—2014 гг., по темам, соответствующим направлениям деятельности Международной ассоциации вулканологии и химии недр Земли (МАВХНЗ) Международного геодезического и геофизического союза (МГГС). Полуостров Камчатка с его знаменитой Ключевской группой вулканов являются наиболее вулканически активной областью России и одной из самых активных в мире. Основные результаты исследований по вулканологии и химии недр Земли в 2011—2014 гг. были получены в данном регионе, включая недавние данные по новому трещинному извержению вулкана Толбачик в 2012—2013 гг. Кроме того, в отчет включены полученные российскими учеными научные результаты по магматизму за пределами России. В отчете представлены основные достижения по геохимии, геотермии, геодинамике, геохронологии и глубинному строению мантии. Описаны исследования как для отдельных вулканов, так и для целых регионов. Рассмотрены теоретические прикладные вопросы вулканических процессов. Основные выводы приведены на сводных иллюстрациях. Приведены все требуемые ссылки.
Neal C.A., Herrick J.A., Girina O.A., Chibisova M.V., Rybin A.V., McGimsey R.G., Dixon J. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory. 2014. 76 p.
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Neal C.A., McGimsey R.G., Girina O.A. 2002 Volcanic Activity in Alaska and Kamchatka: Summary of Events and Response of the Alaska Volcano Observatory Open-File Report 2004-1058. 2004. 55 p.