Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1899
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 O
On the origin of ignimbrites in relation to the study of recent eruptions (1963)
Gorshkov G.S. On the origin of ignimbrites in relation to the study of recent eruptions // Bulletin of Volcanology. 1963. V. 25. P. 33-37.
On the petrochemistry of volcanic rocks in connection with the formation of island arcs (1961)
Gorshkov G.S. On the petrochemistry of volcanic rocks in connection with the formation of island arcs // Publ. du Bureau Central Sasmol Intern. 1961. V. A. № 22.
On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply (2007)
Fedotov S.A., Sugrobov V.M., Utkin I.S., Utkina L.I. On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply // Journal of Volcanology and Seismology. 2007. V. 1. № 1. P. 28-41. doi:10.1134/S0742046307010022.    Аннотация
The results of geological and geophysical studies, including recent ones, which make it possible to verify the existence of a liquid magma chamber below the Avachinsky volcano on Kamchatka, and to estimate the chamber depth and approximate dimensions, are analyzed. The heat stored in the host rock heated by the volcanic magma chamber from the time of chamber origination to the present is estimated, taking variable chamber dimensions during the process of evolution into account. The geological-geophysical prerequisites for using the thermal energy of the heated rock which surrounds the magma chamber to supply heat and power to Petropavlovsk-Kamchatskii are analyzed. The creation of an underground geothermal circulation system (fracture heat exchanger) using deep boreholes is proposed.
http://repo.kscnet.ru/10/ [связанный ресурс]
On the relation between seismic and volcanic phenomena and the energy balance of the Bezymianny volcano eruption (1963)
Gorshkov G.S. On the relation between seismic and volcanic phenomena and the energy balance of the Bezymianny volcano eruption // Proc. 9th Pacific Sci. Congr. 1963. V. 12.
Operative remote sensing monitoring of Kamchatkan volcanoes using the information system VolSatView (2015)
Girina O.A., Lupian E.A., Sorokin A.A., Melnikov D.V., Manevich A.G. Operative remote sensing monitoring of Kamchatkan volcanoes using the information system VolSatView // 7th International Workshop on Volcanic Ash (IWVA/7), 19-23 October 2015. IWVA/7. 2015. P. 1-26.    Аннотация
There are 30 active volcanoes in the Kamchatka, and several of them are continuously active. In 2014-2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) had strong and moderate explosive eruptions.
Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines.
Annual Kamchatkan strong explosive eruptions with ash emissions by 8-15 km above sea level represent a real threat to modern jet aviation. To reduce the risk of aircraft encounters with volcanic ash clouds in the North Pacific region, since 2002, KVERT IVS FEB RAS conduct a daily satellite monitoring of 30 Kamchatkan volcanoes and visual and video monitoring of Klyuchevskoy, Sheveluch, Bezymianny, Koryaksky, Avachinsky, Mutnovsky and Gorely volcanoes. KVERT analyses seismic data for 9 volcanoes (Klyuchevskoy, Sheveluch, Bezymianny, Tolbachik, Kizimen, Karymsky, Koryaksky, Avachinsky and Gorely) from the Kamchatkan Branch of Geophysical Survey RAS.
KVERT send Volcano Observatory Notice for Aviation (VONA) by email to Airport Meteorological Center (AMC) at Yelizovo Airport; and the Tokyo Volcanic Ash Advisory Centers (VAAC), the Anchorage VAAC, the Washington VAAC, the Montreal VAAC, and the Darwin VAAC; aviation services, and scientists located throughout the North Pacific region. VONA/KVERT Releases are posted on the web site: http://www.kscnet.ru/ivs/kvert/
Since 2011, experts from IVS FEB RAS, Space Research Institute RAS, Computing Center FEB RAS and the Far Eastern Planeta Research Center have operated the information system “Monitoring of Volcanoes Activity in Kamchatka and the Kuriles” (VolSatView; http://volcanoes.smislab.ru) that uses all available satellite data (operative and long-term archive data), weather and on-ground observations, the results of computational modeling of ash clouds and plumes trajectories to ensure continues monitoring and study of volcanic activity in Kamchatka and the Kuriles.
Origin of scatter in paleomagnetic directions of samples from Gorely Volcano, Kamchatka, Russia (1994)
Riley Colleen Origin of scatter in paleomagnetic directions of samples from Gorely Volcano, Kamchatka, Russia. 1994. Дисс. докт. геол.-мин. наук. 70 p.    Аннотация
Lava flows from sixteen sites at Gorely Volcano, Kamchatka were sampled. Initial analysis showed high within-site scatter for NRM specimen directions. Alternating field and thermal demagnetization of specimens showed single-component magnetization indicating that specimens had not moved or were not exposed to changes in the magnetic field during acquisition of a magnetic direction. Scatter is thought to be either due to movement of the specimen with respect to the magnetic field or change in the magnetic field with respect to the specimen. Four factors were found that would contribute to scatter in specimen directions. These are 1) cooling rate, 2) range of unblocking temperatures, 3) relative time of emplacement, and 4) how the specimen moved or was affected by changes in the magnetic field. Only two sites showed that scatter was due to movement of the specimen. It appears that scatter in other sites resulted from changes in the magnetic field generated from a magma-induced electrical current due to lava flowing in the earth’s magnetic field. These changes in the magnetic field are shown to have more affect on material sampled at the surface than on material sampled at depth because massive interiors of flows showed less dispersion in specimen directions than levees or pull-aparts.
Origin of spatial compositional variations of volcanic rocks from Northern Kurile Islands: Geochemical studies of active volcanoes on Paramushir, Atlasova, Antsiferova islands and submarine volcanoes (2013)
Bergal-Kuvikas Olga, Nakagawa Mitsuhiro, Avdeiko Gennady Origin of spatial compositional variations of volcanic rocks from Northern Kurile Islands: Geochemical studies of active volcanoes on Paramushir, Atlasova, Antsiferova islands and submarine volcanoes // International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI). 2013, Kagoshima. Japan.. 2013.
Origin of volatiles emitted by Plinian basaltic eruptions of Chikurachki volcano, Kurile arc, Russia: trace element, boron and sulphur isotope constraints (2018)
Gurenko A., Belousov A., Kamenetsky V., Zelenski M. Origin of volatiles emitted by Plinian basaltic eruptions of Chikurachki volcano, Kurile arc, Russia: trace element, boron and sulphur isotope constraints // Chemical Geology. 2018. № 478. P. 131-147.
Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia (2015)
Belousov Alexander, Belousova Marina, Edwards Benjamin, Volynets Anna, Melnikov Dmitry Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 22 - 37. doi: 10.1016/j.jvolgeores.2015.06.013.    Аннотация
Abstract We present a broad overview of the 2012–13 flank fissure eruption of Plosky Tolbachik Volcano in the central Kamchatka Peninsula. The eruption lasted more than nine months and produced approximately 0.55 km3 {DRE} (volume recalculated to a density of 2.8 g/cm3) of basaltic trachyandesite magma. The 2012–13 eruption of Tolbachik is one of the most voluminous historical eruptions of mafic magma at subduction related volcanoes globally, and it is the second largest at Kamchatka. The eruption was preceded by five months of elevated seismicity and ground inflation, both of which peaked a day before the eruption commenced on 27 November 2012. The batch of high-Al magma ascended from depths of 5–10 km; its apical part contained 54–55 wt. SiO2, and the main body 52–53 wt. SiO2. The eruption started by the opening of a 6 km-long radial fissure on the southwestern slope of the volcano that fed multi-vent phreatomagmatic and magmatic explosive activity, as well as intensive effusion of lava with an initial discharge of > 440 m3/s. After 10 days the eruption continued only at the lower part of the fissure, where explosive and effusive activity of Hawaiian–Strombolian type occurred from a lava pond in the crater of the main growing scoria cone. The discharge rate for the nine month long, effusion-dominated eruption gradually declined from 140 to 18 m3/s and formed a compound lava field with a total area of ~ 36 km2; the effusive activity evolved from high-discharge channel-fed 'a'a lavas to dominantly low-discharge tube-fed pahoehoe lavas. On 23 August, the effusion of lava ceased and the intra-crater lava pond drained. Weak Strombolian-type explosions continued for several more days on the crater bottom until the end of the eruption around 5 September 2013. Based on a broad array of new data collected during this eruption, we develop a model for the magma storage and transport system of Plosky Tolbachik that links the storage zones of the two main genetically related magma types of the volcano (high-Al and high-Mg basalts) with the clusters of local seismicity. The model explains why precursory seismicity and dynamics of the 2012–13 eruption was drastically different from those of the previous eruption of the volcano in 1975–76.
 P
Paleomagnetic chronostratigraphy of young eruptive series (1982)
Kochegura V.V., Zubov A.G. Paleomagnetic chronostratigraphy of young eruptive series // Abstracts: generation of major basalt types. August 15-22, 1982. Reykjavik, Island: IAVCEI-IAGC Scientific Assembly. 1982. V. 81.
Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data (2018)
Krippner J., Belousov A., Belousova M., Ramsey M. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data // Journal of Volcanology and Geothermal Research. 2018. № 354. P. 115-129.
Parasitic eruption of Klyuchevskoy volcano (Predskazanny eruption, 1983) (1988)
Khrenov A.P., Ozerov A.Yu., Litasov N.E., Slezin Yu.B., Murav’ev Ya.D., Zharinov N.A. Parasitic eruption of Klyuchevskoy volcano (Predskazanny eruption, 1983) // Volcanology and Seismology. 1988. V. 7. P. 1-24.
Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: Implications for magma genesis and crustal recycling in the Kamchatkan arc (1995)
Kersting Annie B., Arculus Richard J. Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: Implications for magma genesis and crustal recycling in the Kamchatkan arc // Earth and Planetary Science Letters. 1995. V. 136. № 3–4. P. 133 - 148. doi: 10.1016/0012-821X(95)00196-J.    Аннотация
Pb isotope data are used to constrain the chemical contribution of the subducted components in the recycling beneath Klyuchevskoy volcano, the most active volcano in the Kamchatkan arc. The Pb isotope ratios of Klyuchevskoy basalts (206Pb/204Pb= 18.26–18.30, 207/Pb204Pb= 15.45–15.48, 208/Pb204Pb= 37.83–37.91) define a narrow range that falls within the Pacific mid-ocean ridge basalt (MORB) field and are among the least radiogenic island arc basalts measured to date. These data are similar to data from three other Quaternary Kamchatkan volcanoes: Tolbachik, Kumroch-Shish, and Maly Semiachik. In contrast, North Pacific sediments (primarily siliceous oozes) collected parallel to the Kamchatkan trench during Ocean Drilling Program Leg 145, have Pb isotope ratios (206Pb/204Pb= 18.51–18.78, 207Pb/204Pb= 15.56–15.64, 208Pb/204Pb= 38.49–38.75) that are more radiogenic than either the Klyuchevskoy basalts or Pacific MORB. Incorporation of even a small amount of sediment in the source of the Klyuchevskoy magmas would shift the Pb isotope ratios of the erupted basalts from the MORB field to more radiogenic values. The absence of 10Be and elevated Pb isotope ratios in the Kamchatkan volcanic lavas, despite the presence of distinctively radiogenic Pb in the North Pacific sediments makes it unlikely that sediments or sediment-derived fluids are involved in the source magmas beneath Kamchatka. The Kamchatkan arc thus represents an “end-member” whereby little or no sediment is involved in terms of elemental recycling and arc magma genesis. The major and trace elements, Pb, Sr and Nd isotope data of the Kamchatkan basalts are most consistently explained if derived from a fluid-fluxed, peridotitic mantle wedge source, wherein the fluid composition is dominantly controlled by dehydration of altered oceanic crust, imparting a radiogenic 87Sr/86Sr, and MORB-like Pb isotope signature to the mantle source. The erupted Klyuchevskoy lavas preserve a slab signature derived from incompatible elements that are strongly partitioned into the fluid. The 30 km of arc crust through which the Klyuchevskoy magmas traverse prior to eruption is not composed of older crust, but must be juvenile, similar in isotopic composition to MORB.
Periodic volcanic activity of Klyuchevskoy and Ushkovsky volcanoes during the early Holocene inferred from tephra study (2009)
Krasheninnikov Stepan, Portnyagin Maxim, Ponomareva V.V., Bergal-Kuvikas Olga, Mironov Nikita Periodic volcanic activity of Klyuchevskoy and Ushkovsky volcanoes during the early Holocene inferred from tephra study 2009.
Petrochemical features of volcanism in relation to the types of the Earth's crust (1962)
Gorshkov G.S. Petrochemical features of volcanism in relation to the types of the Earth's crust // The Crust of the Pacific Basin // Geoph. Monograph. 1962. V. 6. P. 110-115.
Petrochemistry of volcanic rocks in relation to the formation of island arcs (1961)
Gorshkov G.S. Petrochemistry of volcanic rocks in relation to the formation of island arcs // Annali di Geofisica. 1961. V. 14. № 2.
Petrochemistry of volcanic rocks in the Kurile Islands arc with some generalizations on volcanism (1973)
Gorshkov G.S. Petrochemistry of volcanic rocks in the Kurile Islands arc with some generalizations on volcanism // The Western Pacific: Island Arcs, Marginal Seas, Geochemistry. 1973. P. 459-467.
Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia (2015)
Churikova Tatiana G., Gordeychik Boris N., Iwamori Hikaru, Nakamura Hitomi, Ishizuka Osamu, Nishizawa Tatsuji, Haraguchi Satoru, Miyazaki Takashi, Vaglarov Bogdan S. Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 156 - 181. doi: 10.1016/j.jvolgeores.2015.10.026.    Аннотация
Data on the geology, petrography, and geochemistry of Middle–Late-Pleistocene rocks from the Tolbachik volcanic massif (Kamchatka, Klyuchevskaya group of volcanoes) are presented and compared with rocks from the neighboring Mount Povorotnaya, Klyuchevskaya group basement, and Holocene–historical Tolbachik monogenetic cones. Two volcanic series of lavas, middle-K and high-K, are found in the Tolbachik massif. The results of our data analysis and computer modeling of crystallization at different P–T–H2O–fO2 conditions allow us to reconstruct the geochemical history of the massif. The Tolbachik volcanic massif started to form earlier than 86 ka based on K–Ar dating. During the formation of the pedestal and the lower parts of the stratovolcanoes, the middle-K melts, depleted relative to NMORB, fractionated in water-rich conditions (about 3 of H2O). At the Late Pleistocene–Holocene boundary, a large fissure zone was initiated and the geodynamical regime changed. Upwelling associated with intra-arc rifting generated melting from the same mantle source that produced magmas more enriched in incompatible trace elements and subduction components; these magmas are high-K, not depleted relative to N-MORB melts with island arc signatures and rift-like characteristics. The fissure opening caused degassing during magma ascent, and the high-K melts fractionated at anhydrous conditions. These high-K rocks contributed to the formation of the upper parts of stratovolcanoes. At the beginning of Holocene, the high-K rocks became prevalent and formed cinder cones and associated lava fields along the fissure zone. However, some features, including 1975–1976 Northern Breakthrough, are represented by middle-K high-Mg rocks, suggesting that both middle-K and high-K melts still exist in the Tolbachik system. Our results show that fractional crystallization at different water conditions and a variably depleted upper mantle source are responsible for all observed variations in rocks within the Tolbachik volcanic massif. Sr–Nd isotopes are consistent with 2–4 crustal assimilation during formation of the pedestal and stratovolcanoes, while the young lava fields do not show evidence of crustal assimilation. Major and trace element data coupled with K–Ar dating provide strong evidence that Mount Povorotnaya, located in 8 km northeast of Plosky Tolbachik, is an old block of the Tolbachik massif pedestal and for the moment it is the oldest (306 ka) known object in Klyuchevskaya group of volcanoes.
Petrological constraints on the mechanisms of catastrophic explosive eruptions of andesitic and acid magmas (2011)
Maximov A.P. Petrological constraints on the mechanisms of catastrophic explosive eruptions of andesitic and acid magmas // 7 th Biennual Workshop on Japan-Kamchatka-Alaska Subduction Processes: Mitigating Risk Through International Volcano, Earthquake, and Tsunami Science (JKASP-2011). August 25-30, 2011, Petropavlovsk-Kamchatsky. 2011. P. 257-258.
Petrology and geochemistry of the New Tolbachik Fissure Eruption volcanic rocks and their evolution during the first two weeks of eruption (2013)
Volynets Anna, Melnikov Dmitry, Yakushev Anton, Tolstykh Maria Petrology and geochemistry of the New Tolbachik Fissure Eruption volcanic rocks and their evolution during the first two weeks of eruption // IAVCEI 2013 Scientific Assembly. July 20 - 24, Kagoshima, Japan. 2013. P. 743





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru