Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2302
 К
Количественная оценка параметров Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН и динамики вулканогенного рельефа на основе данных дистанционного зондирования (2014)
Михайлюкова П.Г., Тутубалина О.В., Мельников Д.В., Зеленин Е.А. Количественная оценка параметров Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН и динамики вулканогенного рельефа на основе данных дистанционного зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 4. С. 351-359.    Annotation
Статья представляет результаты исследования Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН (ТТИ-50) 2012-2013 гг. по данным дистанционного зондирования.
Нами оценены количественные характеристики ТТИ-50: величины вертикальных смещений, площадь лавовых полей, их мощность и объем. Значения вертикальных смещений оценивались по серии радиоинтерферометрических пар для зоны извержения. Пары снимков соответствуют заключительной фазе извержения, когда величины смещения были небольшими. Вертикальные смещения рассчитаны для участков лавовых полей, значение когерентности которых превышает 0,4. Полученная серия значений вертикальных смещений отражает преимущественно процесс остывания лавы, для которого характерны просадки поверхности. Максимальные величины смещений составили 27 см за 24 дня.
Вычисление мощности лавовых полей выполнялось на основе анализа разновременных ЦМР. Высотные профили, измеренные геодезическими приемниками GPS в ходе полевых работ в августе 2013 года, были использованы для оценки точности ЦМР: общедоступных SRTM, SRTM-X, ASTER GDEM и ЦМР, построенной ИТЦ СКАНЭКС по двум оптическим стереопарам SPOT 6 (от 18.07.2013 и 11.10.2013). Среднеквадратическая погрешность определения абсолютных высот по ЦМР SRTM-X и SPOT6, по сравнению с данными наземных съемок, не превышает 5 м. Это делает возможным оценку мощности лавовых потоков по разности высот SRTM-X и SPOT6. ЦМР SPOT6 за две даты использовались совместно для исключения ошибок, связанных с облачностью и свежевыпавшим снегом. Максимальные значения мощности превышают 80 м. Вычисленный объем извержения - 0,521±0.25 км3.

This paper presents results of study of the 2012-2013 Tolbachik fissure eruption on the basis of remote sensing
techniques.
We have calculated values of vertical displacements, lava thickness and the volume of the erupted lava. Values of
vertical displacements were estimated using a series of
radar interferometric pairs for the Tolbachik eruption zone.
These pairs correspond to the concluding phase of the erupti
on, when vertical displacements were relatively small.
Vertical displacements were calculated for parts of lava fields with coherence value over 0,4. The obtained values of
vertical displacement are typical for subsidence caused by cooling lava flows. The maximum value of subsidence is
27 cm for 24 days. The calculation of lava thickness was based on comparison of multitemporal DEMs. Height profiles measured by geodetic GPS receivers during fieldwork in August 2013 were used to estimate the quality of DEMs, derived from satellite imagery: freely available SRTM, SRTM-X, ASTER GDEM and the DEMs calculated at RDC ScanEx from two stereopairs of SPOT6 images (of 18.07.2013 and 11.10.2013). The RMS error for heights of SRTM-X and
SPOT 6 in relation to GPS data is within ±5 m. This enables to estimate the total thickness of new lava fields on the
basis of height differences between SRTM-X and SPOT 6 DEMs. Both SPOT 6 DEMs were used together to eliminate errors caused by clouds and snow. The maximum lava thickness is over 80 m. The volume of the erupted lava is 0,521±0,25 km3.
Количественные характеристики активности вулканов Камчатки по данным веб-камер (2015)
Мельников Д.В., Маневич А.Г., Гирина О.А. Количественные характеристики активности вулканов Камчатки по данным веб-камер // Материалы XVIII региональной конференции, посвященной Дню вулканолога, 30 марта - 1 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2015. С. 92-94.
Количество газовых компонентов, участвовавших в вулканических взрывах при извержении кратера им. Пийпа в 1966 г. (1968)
Мархинин Е.К. Количество газовых компонентов, участвовавших в вулканических взрывах при извержении кратера им. Пийпа в 1966 г. // Бюллетень вулканологических станций. 1968. № 44. С. 42-44.
Количество, распространение и петрохимические особенности пирокластики Большого трещинного Толбачинского извержения (1978)
Будников В.А., Мархинин Е.К., Овсянников А.А. Количество, распространение и петрохимические особенности пирокластики Большого трещинного Толбачинского извержения // Геологические и геофизические данные о Большом трещинном извержении 1975-1976 гг.. 1978. С. 32-43.
Комментарий ученого к статье Е.М. Верещаги и И.В. Витер "Остров Матуа: последствия цунами 2006 г. и извержения вулкана Пик Сарычева в 2009 г. (Из наблюдений участников Камчатско-Курильских историко-географических экспедиций в 2007-2009 гг.)" (2011)
Мелекесцев И.В. Комментарий ученого к статье Е.М. Верещаги и И.В. Витер "Остров Матуа: последствия цунами 2006 г. и извержения вулкана Пик Сарычева в 2009 г. (Из наблюдений участников Камчатско-Курильских историко-географических экспедиций в 2007-2009 гг.)" // Вопросы географии Камчатки. 2011. № 13. С. 132-133.
Комплексная (катастрофические вулканические + сильнейшие сейсмические события) электронная база данных как основа для модифициро­ванной геодинамической парадигмы (на примере Пацифики) (2009)
Викулин А.В., Мелекесцев И.В., Гусяков В.К., Акманова Д.Р., Осипова Н.А. Комплексная (катастрофические вулканические + сильнейшие сейсмические события) электронная база данных как основа для модифициро­ванной геодинамической парадигмы (на примере Пацифики) // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Второй региональной научно-технической конференции. Петропавловск-Камчатский, 11-17 октября 2009 г. Петропавловск-Камчатский: ГС РАН. 2009. С. 13
Комплексное моделирование подводных вулканов 2.7 и 2.8 (Курильская островная дуга) (2013)
Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Рашидов В.А., Трусов А.А. Комплексное моделирование подводных вулканов 2.7 и 2.8 (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2013. Вып. 21. № 1. С. 77-85.    Annotation
Приводятся результаты применения авторской компьютерной технологии для интерпретации материалов комплексных исследований подводных вулканов 2.7 и 2.8, расположенных к западу от юго-западного берега о. Онекотан в Курильской островной дуге. В результате проведенных исследований выполнена оценка магнитных свойств горных пород в естественном залегании и установлено, что наиболее намагниченными являются юго-западные склоны подводного вулкана 2.8, эффективная намагниченность которых достигает 2 А/м. Сделаны предположения о юго-западном направлении подводящего канала подводного вулкана 2.7 и субвертикальном, юго-западном и юго-восточном направлениях подводящих каналов подводного вулкана 2.8. Отмечено наличие на глубине около 650 м периферического магматического очага вулкана 2.8.

The paper provides results from application of designed modern computer techniques for interpretation of materials from complex geophysical investigation of submarine volcanoes 2.7 and 2.8, which are located west of the south-western coast of Onekotan Island in the Kurile island arc. The research resulted in estimation of rock magnetic properties in natural deposits and revealed that the south-western flanks of submarine volcano 2.8 are the most magnetized with their productive magnetization of about 2 A/m. The authors suggested that the feeding channels of volcano 2.7 stretch southwest, while the feeding channels of volcano 2.8 stretch subverticaly, southwest and southeast. A peripheral magma chamber of the volcano was revealed at the depth of about 650 m.
Комплексные геолого-геофизические исследования подводного вулкана Обручева (Курильская островная дуга) (2015)
Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Рашидов В.А., Трусов А.А. Комплексные геолого-геофизические исследования подводного вулкана Обручева (Курильская островная дуга) // Глубинное строение, геодинамика, тепловое поле Земли, интерпретация геофизических полей. Восьмые научные чтения памяти Ю.П. Булашевича. Екатеринбург 14 – 18 сентября 2015. Екатеринбург: УрО РАН. 2015. С. 26-29.
Комплексные геолого-геофизические исследования подводного вулканического массива Архангельского (Курильская островная дуга) (2019)
Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Петрова В.В., Пилипенко О.В., Рашидов В.А., Трусов А.А. Комплексные геолого-геофизические исследования подводного вулканического массива Архангельского (Курильская островная дуга) // Вестник КРАУНЦ. Серия: Науки о Земле. 2019. Вып. 44. № 4. С. 35-50. doi: 10.31431/1816-5524-2019-4-44-35-50.    Annotation
Приводятся результаты комплексных геолого-геофизических исследований подводного вулканического массива Архангельского, расположенного в проливе Буссоль в центральной части Курильской островной дуги. Массив состоит из слившихся между собой и срезанных абразией вулканических построек. Массив слагают эндогенные базальты и экзогенные туфы. Породы и минералы, за исключением кварца, гидротермально изменены, причем изменения происходили не до, а после образования туфа. Высокие значения естественной остаточной намагниченности драгированных горных пород обусловлены большим содержанием однодоменных и псевдооднодоменных зерен титаномагнетита и магнетита. Образование массива Архангельского, вероятнее всего, происходило в периоды глобальных геомагнитных возмущений. В постройке массива выделены подводящие каналы субвертикального и юго-восточного простираний и магнитовозмущающие блоки с разными геометрическими и магнитными характеристиками, а на глубинах 1100–1200 м выявлен периферический магматический очаг. У юго-юго-восточного подножия массива идентифицированы крупные оползневые блоки.

The article presents the results of integrated geologic-geophysical investigation of the Arkhangelsky submarine volcanic massif, which is located in the Bussol Strait in the central zone of the Kurile Island Arc. The massif consists of amalgamated and eroded volcanic edifices and is built up of endogenous basalts and exogenous tuffs. Rocks and minerals to the exclusion of quartz are hydrothermally altered; moreover they were altered after the formation of tuff. High values of the natural remnant magnetization of dredged rocks are caused by the high content of single-domain and pseudo-single-domain grains of titanomagnetite and magnetite. The Arkhangelsky massif most likely was formed during periods of global geomagnetic disturbances. The authors have revealed feeders of the near-vertical and southeastern trends and causative magnetic blocks with different geometric and magnetic characteristics in the edifice of the massif. A peripheral magma chamber has been revealed between depths of 1100–1200 m. At the southeast foot of the massif we found large landslide blocks.
Комплексные геолого-геофизические исследования подводных вулканов Курильской островной дуги в 2014–2015 гг. (2015)
Аникин Л.П., Блох Ю.И., Бондаренко В.И., Долгаль А.С., Новикова П.Н., Петрова В.В., Пилипенко О.В., Рашидов В.А., Трусов А.А. Комплексные геолого-геофизические исследования подводных вулканов Курильской островной дуги в 2014–2015 гг. // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 30 марта-01 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2015. С. 115-118.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2020. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru