Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1806
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 S
Shiveluch volcano: seismicity, deep structure and forecasting eruptions (Kamchatka) (1997)
Gorelchik V.I., Shirokov V.A., Firstov P.P., Chubarova O.S. Shiveluch volcano: seismicity, deep structure and forecasting eruptions (Kamchatka) // Journal of Volcanology and Geothermal Research. 1997. V. 78. № 1–2. P. 121 - 137. doi: 10.1016/S0377-0273(96)00108-4.    Аннотация
The deep structure, Wadati-Benioff zone (focal zone) geometry and the magma feeding system of Shiveluch volcano are investigated based on 1962–1994 detailed seismic surveillance. A focal zone beneath Shiveluch is dipping at an angle of 70° at depths of 100–200 km. Based on the revealed interrelations between seismicity at depths of 105–120 km and an extrusive phase of its eruptions in 1980 through 1994, it is inferred that primary magmas, periodically feeding the crustal chamber, are melted at depths of at least 100 km. An upsurge of extrusive-explosive activity at the volcano is preceded and accompanied by the increasing number and energy of both volcanic earthquakes beneath the dome and tectonic or volcano-tectonic earthquakes in the zones of NW-striking crustal faults near the volcano.The eruption of April 1993 has been the most powerful since 1964. It was successfully predicted based on interactive use of all seismic data. At the same time the influence of seismicity at depths of 105–120 km under the volcano on the style (and consequently on prediction) of its activity is decisive.
Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa (2010)
Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa // Chemical Geology. 2010. V. 277. № 1–2. P. 115 - 125. doi: 10.1016/j.chemgeo.2010.07.014.    Аннотация
The solubility of H2O- and CO2-bearing fluids in tholeiitic basalts has been investigated experimentally at temperature of 1250 °C and pressures of 50, 100, 200, 300, 400 and 500 MPa. The concentrations of dissolved H2O and CO2 have been determined using FTIR spectroscopy with an accurate calibration of the absorption coefficients for hydrogen- and carbon-bearing species using synthesized standards of the same tholeiitic composition. The absorption coefficients are 0.65 ± 0.08 and 0.69 ± 0.08 L/(mol cm) for molecular H2O and OH groups by Near-Infrared (NIR), respectively, and 68 ± 10 L/(mol cm) for bulk H2O by Mid-Infrared (MIR). The carbonate groups determined by MIR have an absorption coefficient of 317 ± 23 L/(mol cm) for the band at 1430 cm−1.The solubility of H2O in the melt in equilibrium with pure H2O fluid increases from about 2.3 ± 0.12 wt.% at 50 MPa to about 8.8 ± 0.16 wt.% at 500 MPa, whereas the concentration of CO2 increases from about 175 ± 15 to 3318 ± 276 ppm in the melts which were equilibrated with the most CO2-rich fluids (with mole fraction of CO2 in the fluid, XflCO2, from 0.70 to 0.95). In melts coexisting with H2O- and CO2-bearing fluids, the concentrations of dissolved H2O and CO2 in basaltic melt show a non-linear dependence on both total pressure and mole fraction of volatiles in the equilibrium fluid, which is in agreement with previous studies. A comparison of new experimental data with existing numerical solubility models for mixed H2O–CO2 fluids shows that the models do not adequately predict the solubility of volatiles in basaltic liquids at pressures above 200 MPa, in particular for CO2, implying that the models need to be recalibrated.

The experimental dataset presented in this study enables a quantitative interpretation of volatile concentrations in glass inclusions to evaluate the magma storage conditions and degassing paths of natural island arc basaltic systems. The experimental database covers the entire range of volatile compositions reported in the literature for natural melt inclusions in olivine from low- to mid-K basalts indicating that most melt inclusions were trapped or equilibrated at intermediate to shallow levels in magmatic systems (< 12–15 km).
Some result of seismometric investigations at the Kamchatka Volcanological Station (1960)
Gorshkov G.S. Some result of seismometric investigations at the Kamchatka Volcanological Station // Bulletin Volcanologique, organe de IAV. 1960. V. 23. V. 2. P. 121-128.
Spaceborne and field-based observations of Bezymianny Volcano, Kamchatka from 2000-2008 (2008)
Carter A.J., Ramsey M.S., Girina O.A., Belousov A.B., Durant A., Skilling I., Wolfe A. Spaceborne and field-based observations of Bezymianny Volcano, Kamchatka from 2000-2008 // Abstracts. AGU Fall Meeting, 14-19 December. San-Francisco, USA: AGU. 2008. doi: V43A-2140.
Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR (2004)
Ramsey Michael, Dehn Jonathan Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR // Journal of Volcanology and Geothermal Research. 2004. V. 135. № 1-2. P. 127-146. doi:10.1016/j.jvolgeores.2003.12.014.    Аннотация
Since its launch in December 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument has been observing over 1300 of the world's volcanoes during the day and night and at different times of the year. At the onset of an eruption, the temporal frequency of these regularly scheduled observations can be increased to as little as 1–3 days at higher latitudes. However, even this repeat time is not sufficient for near real-time monitoring, which is on the order of minutes to hours using poorer spatial resolution (>1 km/pixel) instruments. The eruption of Bezymianny Volcano (Kamchatkan Peninsula, Russia) in March 2000 was detected by the Alaska Volcano Observatory (AVO) and also initiated an increased observation frequency for ASTER. A complete framework of the eruptive cycle from April 2000 to January 2001 was established, with the Advanced Very High Resolution Radiometer (AVHRR) data used to monitor the large eruptions and produce the average yearly background state for the volcano. Twenty, nearly cloud-free ASTER scenes (2 days and 18 nights) show large thermal anomalies covering tens to hundreds of pixels and reveal both the actively erupting and restive (background) state of the volcano. ASTER short-wave infrared (SWIR) and thermal infrared (TIR) data were also used to validate the recovered kinetic temperatures from the larger AVHRR pixels, as well as map the volcanic products and monitor the thermal features on the summit dome and surrounding small pyroclastic flows. These anomalies increase to greater than 90 °C prior to a larger eruption sequence in October 2000. In addition, ASTER has the first multispectral spaceborne TIR capability, which allowed for the modeling of micrometer-scale surface roughness (vesicularity) on the active lava dome. Where coupled with ongoing operational monitoring programs like those at AVO, ASTER data become extremely useful in discrimination of small surface targets in addition to providing enhanced volcanic mapping capabilities.
Spatial compositional variations in Quaternary volcanic from the Northern Kuril Islands, Russia. (2011)
Bergal-Kuvikas Olga, Nakagawa Mitsuhiro, Avdeiko Gennady, Rashidov V.A. Spatial compositional variations in Quaternary volcanic from the Northern Kuril Islands, Russia. // 7th Biannual workshop on JKASP 2011: Mitigating risk through international volcano, earthquake and tsunami science.. 2011, Petropavlovsk-Kamchatsky. 2011.
Sr-Nd isotopic composition of Shiveluch volcanic massif, Kamchatka (2014)
Gorbach Natalia, Portnyagin Maxim, Hauff Folkmar Sr-Nd isotopic composition of Shiveluch volcanic massif, Kamchatka // 8-th Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes, JKASP 2014. 22-26 September, 2014, Sapporo, Japan. Sapporo, Japan: Hokkaido University. 2014.
Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 (2014)
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Strong Explosive Eruptions of Kamchatkan Volcanoes in 2013 // Abstracts. Japan Geoscience Union Meeting. Yokohama, Japan: JpGU. 2014. № 00275.
Studies of secular paleomagnetic variations in Kamchatka using Holocene tephra (1984)
Nechaeva T.B., Kochegura V.V., Zubov A.G. Studies of secular paleomagnetic variations in Kamchatka using Holocene tephra // Journal of Volcanology and Seismology. 1984. V. 5. № 2. P. 213-218.    Аннотация
Analysis of paleomagnetic variations along parallel sections across the Holocene soil-pyroclastic cover of Ма1уĭ Semyachek Volcano in Kamchatka has shown that directions of magnetization were similar during а period of 350 — 6000 В.P. This proves that magnetization is primary and applicable for reconstruction of the history of the Earth's magnetic field. Paleomagnetic variations that occurred in the interval of 1000 — 4000 В.P. have been investigated in the contemporaneous tephra section of Klyuchevskoĭ Volcano 240 km to the north.
It is known that since some of the tephra horizons may be missing in this section owing to specific conditions of tephra deposition, а more detailed knowledge of paleomagnetic variations requires the study of two or more parallel sections.

Проведено сравнение палеовариаций магнитного поля Земли, полученных по параллельным разрезам голоценового почвенно-пирокластического чехла вулкана Малый Семячик на Камчатке. Показано, что в интервале возраста 300 — 6000 лет назад наблюдается подобие изменений направления остаточной намагниченности подтверждающее первичность этой намагниченности и пригодность ее для реконструкции истории геомагнитного поля. Палеовариации, выделенные для интервала 1000 — 4000 лет назад, прослежены в одновозрастных слоях в 240 км к северу, в разрезе тефры Ключевского вулкана.
Выяснено, что вследствие связанной со спецификой формирования отложений тефры возможности выпадения из разрезов отдельных горизонтов для получения достаточно детальной картины палеовариаций необходимо изучение двух или более параллельных разрезов.
Рис. 6, библ. 3 назв.
http://repo.kscnet.ru/275/ [связанный ресурс]
Study of the Kamchatkan active volcanoes with help of the information system VolSatView (2014)
Gordeev E.I., Lupian E.A., Girina O.A., Efremov V.Yu., Sorokin A.A., Melnikov D.V., Manevich A.G., Romanova I.M., Korolev S.P., Kramareva L.S. Study of the Kamchatkan active volcanoes with help of the information system VolSatView // Modern Information Technologies in Earth Sciences. Proceedings of the International Conference, Petropavlovsk-Kamchatsky, September 8-13, 2014. Vladivostok: Dalnauka. 2014. P. 52-53.
Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: The eruptions from 2005 to 2010 and long-term, long-wavelength subsidence (2013)
Grapenthin Ronni, Freymueller Jeffrey T., Serovetnikov Sergey S. Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: The eruptions from 2005 to 2010 and long-term, long-wavelength subsidence // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 58-74. doi:10.1016/j.jvolgeores.2012.11.012.    Аннотация
Since Bezymianny Volcano resumed its activity in 1956, eruptions have been frequent; recently with up to 1–2 explosive events per year. To investigate deformation related to this activity we installed a GPS network of 8 continuous and 6 campaign stations around Bezymianny. The two striking observations for 2005–2010 are (1) rapid and continuous network-wide subsidence between 8 and 12 mm/yr, which appears to affect KAMNET stations more than 40 km away where we observe 4–5 mm/yr of subsidence, and (2) only the summit station BZ09 shows slight deviations from the average motion in the north component at times of eruptions.
The network-wide subsidence cannot be explained by tectonic deformation related to the build-up of interseismic strain due to subduction of the Pacific plate. A first order model of surface loading by eruptive products of the Kluchevskoy Group of Volcanoes also explains only a fraction of the subsidence. However, a deep sill at about 30 km under Kluchevskoy that constantly discharges material fits our observations well. The sill is constrained by deep seismicity which suggests 9.5 km width, 12.7 km length, and a 13° dip-angle to the south-east. We infer a closing rate of 0.22 m/yr, which implies a volume loss of 0.027 km3/yr (0.16 m/yr and 0.019 km3/yr considering surface loading). Additional stations in the near and far field are required to uniquely resolve the spatial extent and likely partitioning of this source.
We explain the eruption related deformation at BZ09 with a very shallow reservoir, likely within Bezymianny's edifice at a depth between 0.25 km and 1.5 km with a volume change of 1–4 × 10− 4 km3. Much of the material erupted at Bezymianny may be sourced from deeper mid-crustal reservoirs with co-eruptive volume changes at or below the detection limit of the GPS network. Installation of more sensitive instruments such as tiltmeters would allow resolving of subtle co-eruptive motion.
 T
Temperatures of Entering Magma, Formation and Dimensions of Magma Chambers of Volcanoes (1982)
Fedotov S.A. Temperatures of Entering Magma, Formation and Dimensions of Magma Chambers of Volcanoes // Bulletin Volcanologique. 1982. V. 45. № 4. P. 333-348.    Аннотация
A mechanism, of formation of magma chambers that feed volcanoes is discussed. Heat conditions and dimensions of magma chambers which have existed for more than several thousand years may become stable. The approximate equations of heat balance of these chambers are derived by calculating the temperature T1 of the magma entering chambers and the radii a of chambers. Calculations show that the radius of the shallow "peripheral" chambers of the Avachinsky volcano is less than 3-3.5 km. Possible maximum radii of "peripheral" magma chambers were estimated for the Kamchatkan volcanoes of medial size. The temperature difference in their chambers may reach 100-200 "C. This method can be applied to the calculations of "roots" of central-type volcanoes.
Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass (2015)
Ponomareva Vera, Portnyagin Maxim, Pevzner Maria, Blaauw Maarten, Kyle Philip, Derkachev Alexander Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass // International Journal of Earth Sciences. 2015. V. 104. № 5. P. 1459-1482. doi:10.1007/s00531-015-1156-4.    Аннотация
The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts (2011)
Dirksen O., van den Bogaard C., Danhara T., Diekmann B. Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts // Quaternary International. 2011. V. 246. № 1-2. P. 298 - 311. doi: 10.1016/j.quaint.2011.08.032.    Аннотация
Distal volcanic tephras in soil sections and lake sediments in the Dvuh-yurtochnoe (Two-Yurts) lake area, central Kamchatka, were investigated in order to provide a chronological framework for the reconstruction of late Quaternary landscape development. Mineralogical and geochemical data point to sources from 5 volcanoes. Ten tephra layers were identified and correlated to known eruptive events. The ages were corroborated by radiocarbon dating of the soil sections around Two-Yurts lake. These findings allow the reconstruction of regional paleoenvironmental change, recorded in the soil sections around Two-Yurts lake. During the Last Glacial Maximum (LGM) time, the area was affected by glacial advances that produced the glacial moraines at the eastern outlet of the lake. A large landslide, ca. 15,000–18,000 14C BP, dammed the valley and led to formation of Two-Yurts lake. Several more landslide events can be recognized in the Holocene, and one affected Two-Yurts lake ca. 3000 14C BP. This event produced a “tsunami”, documented by poorly sorted deposits with rounded pebbles in the onshore sections around the lake. In contrast to the soil sections, tephras buried in the “soupy” lacustrine sediments of Two-Yurts lake are not well preserved and show inconsistent age-depth relationships compared to those suggested by radiocarbon dating, due to sinking through the lake sediments. Nevertheless, tephrochronological data revealed the strong impact of terrestrial landslides on lake sedimentation.
Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system (2011)
Hasegawa Takeshi, Nakagawa Mitsuhiro, Yoshimoto Mitsuhiro, Ishizuka Yoshihiro, Hirose Wataru, Seki Sho-ichi, Ponomareva Vera, Rybin Alexander Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system // Quaternary International. 2011. V. 246. № 1–2. P. 278 - 297. doi: 10.1016/j.quaint.2011.06.047.    Аннотация
A tephrostratigraphic and petrological study of the Chikurachki (1816 m)-Tatarinov-Lomonosov volcanic chain (CTL volcanic chain) and Fuss (1772 m), located at the southern part of Paramushir Island in the northern Kurile Islands, was carried out to reveal the explosive eruption history during the Holocene and the temporal change of the magma systems of these active volcanoes. Tephra successions were described at 54 sites, and more than 20 major eruptive units were identified, consisting of pumice fall, scoria fall and ash fall deposits, each of which are separated by paleosol or peat layers. The source volcano of each recognized tephra layer was confirmed by correlation with proximal deposits of each eruption center with respect to petrography and whole-rock and glass chemistry. The age of each layer was determined by radiocarbon dating and the stratigraphic relationship with the dated, widespread tephra from Kamchatka according to the thickness of paleosols bracketed between tephra layers. The Holocene activity in this region was initiated by eruptions from the Tatarinov and Lomonosov volcanoes. After the eruptions, the Fuss and Chikurachki volcanoes started their explosive activities at ca. 7.5 ka BP, soon after the deposition of widespread tephra from the Kurile Lake caldera in southern Kamchatka. Compared with Fuss located on the back-arc side, Chikurachki has frequent, repeated explosive and voluminous eruptions. Whole-rock compositions of the rocks of the CTL volcanic chain and Fuss are classified into medium-K and high-K groups, respectively. These suggest that magma systems beneath the CTL volcanic chain and Fuss differ from each other and have been independently constructed. The rocks of the Chikurachki volcano are basalt-basaltic andesite and have gradually evolved their chemical compositions; when graphed on a SiO2-oxide diagram, these form smooth trends from mafic to more felsic. This suggests that the magma system evolved mainly by fractional crystallization. In contrast, matrix glass chemistries for Fuss pumices are distinct for each eruption and show different K2O levels on a SiO2-K2O diagram. This implies that the magma system of Fuss has been frequently replaced. Both volcanoes have been active under the same subduction system. However, the Chikurachki volcano will continue eruptive activity under a stable magma system with a higher magma discharge rate, whereas Fuss may continue construction with an intermittent supply of distinct, small magma batches.
Testing of the Titanomagnetite Method to Detect Magmatic Chamber Depth at Avachinsky Stratovolcano and Tolbachik Fissure Eruption (2014)
Zubov A.G., Ananyev V.V. Testing of the Titanomagnetite Method to Detect Magmatic Chamber Depth at Avachinsky Stratovolcano and Tolbachik Fissure Eruption // 10th International Conference “PROBLEMS OF GEOCOSMOS”. Book of Abstracts. St. Petersburg, Petrodvorets, October 6-10, 2014. St. Peterburg: Физфак СПбГУ. 2014. P. 81    Аннотация
Two volcanoes were tested using the titanomagnetite method in order to detect the magma chamber depth. Curie temperature of andesite tephra shows that the magmatic chamber was situated on the depth of 18±7 km under Avachinsky Volcano ~5 Ka ago, but one of the basalt-andesite tephra from Avachinsky results the chamber depth of 32±6 km ~3 Ka ago. This method applied to the lava from Tolbachik Fissure Eruption (TFE) shows a chamber depth of 47±5 km. This result is inconsistent slightly with the depth of 35±6 km obtained by our microzond analysing of element composition of titanomagnetite grains into lava sample from earlier phase of the same eruption. This two different results between TFE lava samples may occur from magma differentiation or this is a methodical or occasional error. To know true it needs a sample statistics. At present, more microzond data from Tolbachik Fissure Eruption are being analyzed.
http://repo.kscnet.ru/1951 [связанный ресурс]
The 1972-1974 eruption of Klyuchevskoy volcano, Kamchatka (1981)
Ivanov B.V., Gorelchik V.I., Andreev V.N., Maksimov A.P., Stepanov V.V., Chirkov A.M. The 1972-1974 eruption of Klyuchevskoy volcano, Kamchatka // Bulletin of Volcanology. 1981. V. 44. № 1. P. 1-10. doi: 10.1007/BF02598184.    Аннотация
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano.
Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.
The 1985 eruption of Bezymianny (1990)
Alidibirov M.A., Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A., Belousov A.B., Zhdanova E.Yu., Malyshev A.I. The 1985 eruption of Bezymianny // Volcanology and Seismology. 1990. V. 10. № 6. P. 839-863.
The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake (2000)
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. V. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.    Аннотация
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling (2006)
Dirksen O., Humphreys M.C.S., Pletchov P., Melnik O., Demyanchuk Y., Sparks R.S.J., Mahony S. The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling // Journal of Volcanology and Geothermal Research. 2006. V. 155. № 3–4. P. 201 - 226. doi: 10.1016/j.jvolgeores.2006.03.029.    Аннотация
There have been three episodes of lava dome growth at Shiveluch volcano, Kamchatka since the Plinian explosive eruption in 1964. The episodes in 1980–1981, 1993–1995 and 2001–2004 have discharged at least 0.27 km3 of silicic andesite magma. A time-averaged mean extrusion rate of 0.2 m3/s is thus estimated for the last 40 years. Here the 2001–2004 activity is described and compared with the earlier episodes. The recent activity involved three pulses in extrusion rate and a transition to ongoing lava extrusion. Estimated magma temperatures are in the range 830 to 900 °C, with 850 °C as the best estimate, using the plagioclase−amphibole phenocryst assemblage and Fe−Ti oxides. Melt inclusions in amphibole and plagioclase have maximum water contents of 5.1 wt.%, implying a minimum pressure of ∼ 155 MPa for water-saturated conditions. The magma chamber depth is estimated to be about 5–6 km or more, a result consistent with geophysical data. The thicknesses of opx–mt–amph reaction rims on olivine xenocrysts are used to estimate the residence time of olivine crystals in the shallow chamber in the range 2 months to 4 years, suggesting replenishment of deeper magma into the shallow chamber contemporaneous with eruption. The absence of decompression-driven breakdown rims around amphiboles indicates ascent times of less than 7 days. Volcanological observations of the start of the 2001–2004 episode suggest approximately 16 days for the ascent time and a conduit equivalent to a cylinder of diameter approximately 53–71 m. Application of a conduit flow model indicates that the magma chamber was replenished during the 2001–2004 eruption, consistent with the results of olivine reaction rims, and that the chamber has an estimated volume of order 7 km3.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru