Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1787
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
 T
The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat (2002)
Voight B., Komorowski J-C., Norton G. E., Belousov A. B., Belousova M., Boudon G., Francis P. W., Franz W., Heinrich P., Sparks R. S. J., Young S. R. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat // Geological Society, London, Memoirs. 2002. V. 21. № 1. P. 363-407. doi:10.1144/GSL.MEM.2002.021.01.17.
The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships (2004)
Ponomareva V.V., Kyle P.R., Melekestsev I.V., Rinkleff P.G., Dirksen O.V., Sulerzhitsky L.D., Zaretskaia N.E., Rourke R. The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships // Journal of Volcanology and Geothermal Research. 2004. V. 136. № 3-4. P. 199-222. doi:10.1016/j.jvolgeores.2004.05.013.    Аннотация
The 7600 14C-year-old Kurile Lake caldera-forming eruption (KO) in southern Kamchatka, Russia, produced a 7-km-wide caldera now mostly filled by the Kurile Lake. The KO eruption has a conservatively estimated tephra volume of 140–170 km3 making it the largest Holocene eruption in the Kurile–Kamchatka volcanic arc and ranking it among the Earth’s largest Holocene explosive eruptions. The eruptive sequence consists of three main units: (I) initial phreatoplinian deposits; (II) plinian fall deposits, and (III) a voluminous and extensive ignimbrite sheet and accompanying surge beds and co-ignimbrite fallout. The KO fall tephra was dispersed over an area of >3 million km2, mostly in a northwest direction. It is a valuable stratigraphic marker for southern Kamchatka, the Sea of Okhotsk, and a large part of the Asia mainland, where it has been identified as a f6 to 0.1 cm thick layer in terrestrial and lake sediments, 1000–1700 km from source. The ignimbrite, which constitutes a significant volume of the KO deposits, extends to the Sea of Okhotsk and the Pacific Ocean on either side of the peninsula, a distance of over 50 km from source. Fine co-ignimbrite ash was likely formed when the ignimbrite entered the sea and could account for the wide dispersal of the KO fall unit. Individual pumice clasts from the fall and surge deposits range from dacite to rhyolite, whereas pumice and scoria clasts in the ignimbrite range from basaltic andesite to rhyolite. Ignimbrite exposed west and south of the caldera is dominantly rhyolite, whereas north, east and southeast of the caldera it has a strong vertical compositional zonation from rhyolite at the base to basaltic andesite in the middle, and back to rhyolite at the top. Following the KO eruption, Iliinsky volcano formed within the northeastern part of the caldera producing basalt to dacite lavas and pyroclastic rocks compositionally related to the KO erupted products. Other post-caldera features include several extrusive domes, which form islands in Kurile Lake, submerged cinder cones and the huge silicic extrusive massif of Dikii Greben’ volcano.
The Bezymyannyi, Shiveluch, and St. Helens volcanoes: A comparative revision of their catastrophic eruptions during the 20th century (2015)
Slezin Yu. B. The Bezymyannyi, Shiveluch, and St. Helens volcanoes: A comparative revision of their catastrophic eruptions during the 20th century // Journal of Volcanology and Seismology. 2015. V. 9. № 5. P. 289-294. doi:10.1134/S0742046315050073.
The Catastrophic Paleolahars of the Elbrus Volcano, Northern Caucasus (1998)
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Katov D.M., Puriga A.I. The Catastrophic Paleolahars of the Elbrus Volcano, Northern Caucasus // Doklady Earth Sciences. 1998. V. 362. № 7. P. 951-954.
The Elbrus caldera in the northern Caucasus (1998)
Bogatikov O.A., Melekestsev I.V., Gurbanov A.G., Katov D.M., Puriga A.I. The Elbrus caldera in the northern Caucasus // Doklady Earth Sciences. 1998. V. 363 A. № 9. P. 1202-1204.
http://repo.kscnet.ru/934/ [связанный ресурс]
The Eruption of Bezymianny Volcano on August 7, 2001 (2002)
Girina O.A., Ozerov A.Yu., Nuzhdina I.N., Zelenski M.E. The Eruption of Bezymianny Volcano on August 7, 2001 // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 110-111.
The Eruptions of the Northern Group of Volcanoes on Kamchatka in 1988-1989: Seismological and Geodesic Data (1993)
Zharinov N.A., Gorelchik V.I., Zhdanova E.Yu., Andreev V.N., Belousov A.B., Belousova M.G., Gavrilenko V.A., Garbuzova V.T., Demyanchuk Yu.V., Khanzutin V.P. The Eruptions of the Northern Group of Volcanoes on Kamchatka in 1988-1989: Seismological and Geodesic Data // Volcanology and Seismology. 1993. V. 13. V. 6. P. 649-681.
The Evolutionary Stages and Petrology of the Kekuknai Volcanic Massif Reflecting the Magmatism in the Backarc Zone of the Kuril-Kamchatka Island Arc System. Part II. Petrologic and Mineralogical Features, Petrogenesis Model (2013)
Koloskov A.V., Flerov G.B., Perepelov A.B., Melekestsev I.V., Puzankov M.Yu., Filosofova T.M. The Evolutionary Stages and Petrology of the Kekuknai Volcanic Massif Reflecting the Magmatism in the Backarc Zone of the Kuril-Kamchatka Island Arc System. Part II. Petrologic and Mineralogical Features, Petrogenesis Model // Journal of Volcanology and Seismology. 2013. V. 7. № 2. P. 145-169. doi: 10.1134/S0742046313020048.    Аннотация
The Kekuknai massif was formed in the course of tectono-magmatic activity that involved the origin of a shield volcano and a caldera depression with associated emplacement of extrusions that terminated in intense post-caldera areal volcanism. The mineralogical compositions of the massifs rocks have been considered in detail. The use of previously known and newly developed indicator properties of rock-forming minerals allowed the reconstruction of the general picture of the magmatic melt evolution and conditions of rock crystallization (various fluid and water saturation levels, as well as the oxidation state of the system). Essentially island-arc or intraplate characteristics of the massif s rock compositions are found at different stages of development of a single fluid-magmatic system. Decompression evolution of the parent deep-seated basanitic magma occurred via occurrence in intermediate magma chambers of daughter magmas of trachybasalt (pre-caldera stage) or hawaiite (areal volcanism) composition. Subsequent emanate-magmatic differentiation of these melts, combined with crystallization differentiation under changing P-T-f0l conditions, resulted in the formation of the entire diversity of the Kekuknai rocks.

Кекукнайский массив сформировался в результате тектоно-магматической деятельности, выразившейся образованием щитообразного вулкана, кальдерной депрессии с сопутствующим внедрением экструзий, и завершившейся интенсивным посткальдерным ареальным вулканизмом. Проведено детальное рассмотрение особенностей минералогического состава пород массива. Использование уже имеющихся и дополнительно выявленных индикаторных возможностей породообразующих минералов позволило восстановить общую картину эволюции магматических расплавов и условия кристаллизации пород (различная флюидонасыщенность-обводненность и окисленность системы). Существенно островодужные или внутриплитные характеристики в составе пород массива проявлены на разных стадиях развития единой флюидно-магматической системы. Декомпрессионная эволюция материнской глубинной базанитовой магмы была реализована появлением в промежуточных очагах дочерних магм трахибазальтового (докальдерный этап развития системы) или гавайитового (ареальный вулканизм) состава. Дальнейшая эманационно-магматическая дифференциация этих расплавов в сочетании с кристаллизационной дифференциации в условиях меняющейся P-T-f02 обстановки и привела к образованию всего многообразия пород Кекукнайского массива.
http://repo.kscnet.ru/885/ [связанный ресурс]
The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) (2004)
Pevzner M.M. The First Geological Data on the Chronology of Holocene Eruptive Activity in the Ichinskii Volcano (Sredinnyi Ridge, Kamchatka) // Doklady Earth Sciences. 2004. V. 395A. № 3. P. 335-337.
The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano (2000)
Girina O.A., Bursik M.I. The Formation of the Chute and the Channel at the Foot of the Andesitic Dome of Bezymianny Volcano // V52B-02. // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000.
The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976 (1983)
Fedotov S.A., Markhinin Ye.K. The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976. Cambridge: Cambridge University Press. 1983. 354 p.    Аннотация
In 1975–1976 a remarkable volcanic eruption took place on the Kamchtka peninsula, part of the Soviet Union's arc of active volcanoes. Dr Fedotov and his colleagues studied the largest basaltic eruption in history, one of the most important volcanic events in the twentieth century. During this prolonged eruption they carried out extensive seismological, geophysical, geodetic and geochemical investigations. The results of this detailed and thorough investigation were collected as a series of papers under the editorship of S. A. Fedotov and collected into this volume, which was originally published by Cambridge in 1983. The result is a classic descriptive work of a major volcanic eruption.
The June 1986 eruption of Bezymyannyi (1992)
Maksimov A.P., Firstov P.P., Girina O.A., Malyshev A.I. The June 1986 eruption of Bezymyannyi // Volcanology and Seismology. 1992. V. 13. № 1. P. 1-20.    Аннотация
This paper presents the results of visual observations, particle-size analysis, seismological observations, and acoustic measurements carried out during a small-magnitude eruption of Bezymyannyi in June 1986. A mlodel is proposed for the mechanism of the eruption. A specific character of the eruption is explained by a deeper localization of a gas-rich aagia portion in the conduit,
http://repo.kscnet.ru/797/ [связанный ресурс]
The Kamchatka volcano video monitoring system (2016)
Sorokin A.A., Korolev S.P., Romanova I.M., Girina O.A., Urmanov I.P. The Kamchatka volcano video monitoring system // 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016). Tokyo, Japan: 2016. V. II. P. 734-737.
The Main Eruptions of Volcanoes in Kamchatka and Kurile Islands in the 1980 (1987)
Fedotov S.A., Ivanov B.V. The Main Eruptions of Volcanoes in Kamchatka and Kurile Islands in the 1980 // Comptes rendus of the XIX General Assembly of the I.U.G.G.: Vancouver, August 9-22, 1987. 1987. V. 2. P. 422
The Movement of Block and Ash Flows in Channels (2000)
Girina O.A., Bursik M.I. The Movement of Block and Ash Flows in Channels // Abstracts. AGU Spring Meeting 2000. Washington D.C.: 2000. № V52B-0.
The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) (2007)
Maximov A.P., Puzankov M.Yu., Bazanova L.I. The Plumbing System at the Initial Period of the Young Cone Formation, Avachinsky Volcano (Kamchatka) // XXIV IUGG General Assembly. July 2-13, 2007, Perugia, Italy. Perugia, Italy: IUGG. 2007.
The Recent Activity of Sheveluch Volcano (2002)
Girina O.A., Chubarova O.S., Senyukov S.L. The Recent Activity of Sheveluch Volcano // Abstracts. 3rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3). Fairbanks. June 2002. 2002. P. 121-122.
The Shiveluch volcanic eruption of 12 November 1964 — explosive eruption provoked by failure of the edifice (1995)
Belousov A.B. The Shiveluch volcanic eruption of 12 November 1964 — explosive eruption provoked by failure of the edifice // Journal of Volcanology and Geothermal Research. 1995. V. 66. № 1-4. P. 357-365. doi:10.1016/0377-0273(94)00072-O.
The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption (2015)
Churikova T.G., Gordeychik B.N., Edwards B.R., Ponomareva V.V., Zelenin E.A. The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 3 - 21. doi: 10.1016/j.jvolgeores.2015.10.016.    Аннотация
The primary goal of this paper is to summarize all of the published data on the Tolbachik volcanic massif in order to provide a clear framework for the geochronologic, petrologic, geochemical and to a lesser extent the geophysical and tectonic characteristics of the Tolbachik system established prior to the 2012–2013 eruption. The Tolbachik massif forms the southwestern part of the voluminous Klyuchevskoy volcanic group in Kamchatka. The massif includes two large stratovolcanoes, Ostry (“Sharp”) Tolbachik and Plosky (“Flat”) Tolbachik, and a 70 km long zone of the basaltic monogenetic cones that form an arcuate rift-like structure running across the Plosky Tolbachik summit. The Tolbachik massif gained international attention after the 1975–1976 Great Tolbachik Fissure Eruption (GTFE), which was one of the largest eruptions of the 20th century and one of the six largest basaltic fissure eruptions in historical time. By the end of the GTFE, 2.2 km3 of volcanic products of variable basaltic compositions with MORB-like isotopic characteristics covered an area of > 1000 km2. During the following three decades more than 700 papers on various aspects of this eruption have been published both in national and international journals. Although the recent 2012–2013 eruption, which is the main topic of this volume, was not as long as the {GTFE} in duration or as large in area and volume of the erupted deposits, it brought to the surface a unique volcanic material never found before. In order to understand the data from new eruptions and make significant progress towards a better understanding of the Tolbachik magmatic system it is important to be able to put the new results into the historic context of previous research.
The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands (2016)
Gordeev E.I., Girina O.A., Lupyan E.A., Sorokin A.A., Kramareva L.S., Efremov V.Yu., Kashnitskii A.V., Uvarov I.A., Burtsev M.A., Romanova I.M., Mel’nikov D.V., Manevich A.G., Korolev S.P., Verkhoturov A.L. The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands // Journal of Volcanology and Seismology. 2016. V. 10. № 6. P. 382-394. doi: 10.1134/S074204631606004X.    Аннотация
Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru