First data on the volatile fluxes from passively degassing volcanoes of the Kuril Island arc (2017)
Melnikov Dmitry, Malik Nataliya, Chaplygin Ilya, Zelenski Mikhail First data on the volatile fluxes from passively degassing volcanoes of the Kuril Island arc // EGU General Assembly 2017. 2017. Vol. 19.
Formation of high-Al basalt by polybaric fractionation of a high-magnesia parent: Klyuchevskoi volcano (Kamchatka, Russia) (1995)
Barmina G.S., Ariskin A.A., Neilsen R.L., Ozerov A.Yu. Formation of high-Al basalt by polybaric fractionation of a high-magnesia parent: Klyuchevskoi volcano (Kamchatka, Russia) / AGU Spring Meeting 1995. Eos Trans. Abstract V42A-06. Baltimore, Maryland, USA: AGU. 1995. P. 298
Formation of partially submerged tuff ring during the 1996 sublacustrine surtseyan eruption in Karymskoye lake, Kamchatka,Russia (2000)
Belousov Alexander, Belousova Marina Formation of partially submerged tuff ring during the 1996 sublacustrine surtseyan eruption in Karymskoye lake, Kamchatka,Russia // Terra Nostra. International Maar Conference: GeoForschungs Zentrum Potsdam. 2000. Vol. 6. P. 42-52.
Fractionation history recorded in phenocrysts: LA-ICPMS study of clinopyroxenes from Klyuchevskoy and Bezymianny volcanoes, Kamchatka (2006)
Almeev R.R., Kimura J.I., Ariskin A.A., Ozerov A.Yu. Fractionation history recorded in phenocrysts: LA-ICPMS study of clinopyroxenes from Klyuchevskoy and Bezymianny volcanoes, Kamchatka // Berichte der Deutchen Mineralogischen Gesellschaft (N1). DMG-2006 Hannover, Germany, 25-27 September 2006. 2006. P. 8
From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka (2003)
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A., Barmina G.S. From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka // Goldschmidt Conference Abstracts 2003. 2003. P. A13
Gas composition in Mutnovsky geothermal field: Role of meteoric water (2011)
Maximov A.P., Firstov P.P., Chernev I.I., Shapar V.N. Gas composition in Mutnovsky geothermal field: Role of meteoric water // 11th Gas Workshop. 1-10 September 2011, Kamchatka, Russia. 2011. P. 31
Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes (2018)
Taran Yuri, Zelenski Mikhail, Chaplygin Ilya, Malik Natalia, Campion Robin, Inguaggiato Salvatore, Pokrovsky Boris, Kalacheva Elena, Melnikov Dmitry, Kazahaya Ryunosuke, Fischer Tobias Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes // Geochemistry, Geophysics, Geosystems. 2018. Vol. 19. Vol. 6. P. 1859-1880. doi: 10.1029/2018GC007477.
Annotation
The Kuril Island arc extending for about 1,200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with ∼40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg, and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup, and Iturup) emit into the atmosphere > 90% of the total fumarolic gas of the arc. During the field campaigns in 2015–2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO2 flux were conducted on these volcanoes. Maximal temperatures of the fumaroles in 2015–2016 were 510°C (Ebeko), 440°C (Sinarka), 260°C (Kuntomintar), 720°C (Pallas), and 820°C (Kudryavy). The total SO2 flux (in metric tons per day) from fumarolic fields of the studied volcanoes was measured as ∼1,800 ± 300 t/d, and the CO2 flux is estimated as 1,250 ± 400 t/d. Geochemical characteristics of the sampled gases include δD and δ18O of fumarolic condensates, δ13C of CO2, δ34S of the total sulfur, ratios 3He/4He and 40Ar/36Ar, concentrations of the major gas species, and trace elements in the volcanic gas condensates. The mole ratios C/S are generally <1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with 3He/4He values of >7RA (where RA is the atmospheric 3He/4He). The highest 3He/4He ratios of 8.3RA were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.
Gas metasomatism: Experiments on natural Fumaroles of Kudryavyi Volcano, Iturup, Kuril Islands (2000)
Bocharnikov R.E., Shmulovich K I., Tkachenko S.I., Korzhinskii M.A., Steinberg G.S. Gas metasomatism: Experiments on natural Fumaroles of Kudryavyi Volcano, Iturup, Kuril Islands // Geochemistry International. 2000. Vol. 38. P. 186-193.
Annotation
Direct experiments on high-temperature (910 and 620°C) fumaroles of Kudryavy Volcano have demonstrated that low-density volcanic gas interacts with rock-forming and ore minerals (12 minerals were studied). The mechanism of the interaction is determined by gas metasomatism reactions: (a) at given conditions, sphalerite, calcite, barite, and gypsum are either dissolved and removed by gas or replaced with other minerals (calcite → anhydrite); (b) reactions with silicates (feldspars, olivine, and biotite) proceed owing to diffusion cation exchange. Structural rearrangements in biotite are possible due to dehydration and loss of alkalis and aluminum. The kinetics of interaction between hot gas and silicates is governed by the rate of cation diffusion in the mineral at given conditions. Precipitation of sublimates on the surfaces of minerals does not affect much the process of reactions. Interaction between volcanic gas and minerals results in albitization of feldspars and ferruginization of olivine and biotite. The scale of metasomatism in the crystalline rocks of Kudryavyi Volcano has been estimated as about 3 mm in 115 years.
Gas regime defining the mechanism of periodic lava fountaining of basaltic volcanoes (experimental modeling) (2011)
Ozerov A.Yu. Gas regime defining the mechanism of periodic lava fountaining of basaltic volcanoes (experimental modeling) // Commission on the chemistry of volcanic gases (CCVG) - IAVCEI. 11th Gas Workshop, Kamchatka, Russia. 1-10 September 2011. 2011. P. 35
Gas-hydrodynamic model of basalt explosions (based on experimental data) (2008)
Ozerov A. Gas-hydrodynamic model of basalt explosions (based on experimental data) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.