Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2735
 I
International Coordination in Managing Airborne Ash Hazards: Lessons from the Northern Pacific (2018)
Igarashi Yohko, Girina O.A., Osiensky Jeffrey, Moore Donald International Coordination in Managing Airborne Ash Hazards: Lessons from the Northern Pacific / Advances in Volcanology. 2018. P. 529-547. https://doi.org/10.1007/11157_2016_45.
   Аннотация
Airborne volcanic ash is one of the most common, far-travelled, direct hazards associated with explosive volcanic eruptions worldwide. Management of volcanic ash cloud hazards often requires coordinated efforts of meteorological, volcanological, and aviation authorities from multiple countries. These international collaborations during eruptions pose particular challenges due to variable crisis response protocols, uneven agency responsibilities and technical capacities, language differences, and the expense of travel to establish and maintain relationships over the long term. This report introduces some of the recent efforts in enhancing international cooperation and collaboration in the Northern Pacific region.
Intra-oceanic Islands, East Pacific Ridge, Islands arcs: volcanism and upper mantle (1969)
Gorshkov G.S. Intra-oceanic Islands, East Pacific Ridge, Islands arcs: volcanism and upper mantle / Tectonophysics. // Tectonophysics. 1969. № 8. P. 213-221. doi: 10.1016/0040-1951(69)90098-5.
Introduction to the 2012–2013 Tolbachik eruption special issue (2015)
Edwards Benjamin R., Belousov Alexander, Belousova Marina, Volynets Anna Introduction to the 2012–2013 Tolbachik eruption special issue // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 1 - 2. doi: 10.1016/j.jvolgeores.2015.12.001.
Isotope composition of helium in ultrabasic xenoliths from volcanic rocks of Kamchatka (1974)
Tolstikhin I.N., Mamyrin B.A., Khabarin L.B., Erlikh E.N. Isotope composition of helium in ultrabasic xenoliths from volcanic rocks of Kamchatka // Earth and Planetary Science Letters. 1974. Vol. 22. № 1. P. 75-84.
   Аннотация
The purpose of this work is to refine our knowledge about the nature of helium with a high abundance of the rare isotope3He(3He/4He= 10−5) discovered in terrestrial volcanic gases in 1968.
We will discuss here the results of isotope analyses of helium released by step-wise heating of ultrabasic xenoliths and some volcanic rocks. On the basis of these results, possible sources of3He in the earth due to fission and nuclear reactions are considered critically. The most probable source of the high abundance of3He is shown to be due to the capture and trapping of primordial He by the earth during its formation (primordial helium3He/4He= 3 × 10−4), a small but significant fraction of which has been retained to the present time.
Isotopic and Petrologic Investigation, and a Thermomechanical Model of Genesis of Large-Volume Rhyolites in Arc Environments: Karymshina Volcanic Complex, Kamchatka, Russia (2019)
Bindeman I.N., Leonov V.L., Colon D.P., Rogozin Aleksei, Shipley N.K., Jicha B.R., Loewen M.W., Gerya T.V. Isotopic and Petrologic Investigation, and a Thermomechanical Model of Genesis of Large-Volume Rhyolites in Arc Environments: Karymshina Volcanic Complex, Kamchatka, Russia // Frontiers in Earth Science. 2019. Vol. 6. № 238. doi: 10.3389/feart.2018.00238.
   Аннотация
The Kamchatka Peninsula of eastern Russia is currently one of the most volcanically active areas on Earth where a combination of > 8 cm/yr subduction convergence rate and thick continental crust generates large silicic magma chambers, reflected by abundant large calderas and caldera complexes. This study examines the largest center of silicic 4-0.5 Ma Karymshina Volcanic Complex, which includes the 25 × 15 km Karymshina caldera, the largest in Kamchatka. A series of rhyolitic tuff eruptions at 4 Ma were followed by the main eruption at 1.78 Ma and produced an estimated 800 km3 of rhyolitic ignimbrites followed by high-silica rhyolitic post-caldera extrusions. The postcaldera domes trace the 1.78 Ma right fracture and form a continuous compositional series with ignimbrites. We here present results of a geologic, petrologic, and isotopic study of the Karymshina eruptive complex, and present new Ar-Ar ages, and isotopic values of rocks for the oldest pre- 1.78 Ma caldera ignimbrites and intrusions, which include a diversity of compositions from basalts to rhyolites. Temporal trends in δ18O, 87Sr/86Sr, and 144Nd/143Nd indicate values comparable to neighboring volcanoes, increase in homogeneity, and temporal increase in mantle-derived Sr and Nd with increasing differentiation over the last 4 million years. Data are consistent with a batholithic scale magma chamber formed by primarily fractional crystallization of mantle derived composition and assimilation of Cretaceous and younger crust, driven by basaltic volcanism and mantle delaminations. All rocks have 35–45% quartz, plagioclase, biotite, and amphibole phenocrysts. Rhyolite-MELTS crystallization models favor shallow (2 kbar) differentiation conditions and varying quantities of assimilated amphibolite partial melt and hydrothermally-altered silicic rock. Thermomechanical modeling with a typical 0.001 km3/yr eruption rate of hydrous basalt into a 38 km Kamchatkan arc crust produces two magma bodies, one near the Moho and the other engulfing the entire section of upper crust. Rising basalts are trapped in the lower portion of an upper crustal magma body, which exists in a partially molten to solid state. Differentiation products of basalt periodically mix with the resident magma diluting its crustal isotopic signatures. At the end of the magmatism crust is thickened by 8 km. Thermomechanical modeling show that the most likely way to generate large spikes of rhyolitic magmatism is through delamination of cumulates and mantle lithosphere after many millions of years of crustal thickening. The paper also presents a chemical dataset for Pacific ashes from ODDP 882 and 883 and compares them to Karymshina ignimbrites and two other Pleistocene calderas studied by us in earlier works.
 K
KVERT Project: Danger for Aviation during Eruptions of Kamchatkan Volcanoes in 2009-2010 (2011)
Girina O.A., Manevich A.G., Melnikov D.V., Ushakov S.V., Nuzhdaev A.A., Konovalova O.A., Demyanchuk Yu.V. KVERT Project: Danger for Aviation during Eruptions of Kamchatkan Volcanoes in 2009-2010 // Abstracts. International Workshop “JKASP-7”. Petropavlovsk-Kamchatsky. August 25-30. 2011. Petropavlovsk-Kamchatsky: IVS FED RAS. 2011. P. 29-30.
KVERT Project: Danger for Aviation during Eruptions of Kamchatkan and Northern Kuriles Volcanoes in 2006-2008 (2009)
Girina O.A., Ushakov S.V., Manevich A.G., Nuzhdaev A.A., Melnikov D.V., Malik N.A. KVERT Project: Danger for Aviation during Eruptions of Kamchatkan and Northern Kuriles Volcanoes in 2006-2008 // Mitigating natural hazards in active arc environments. Abstracts. 6rd Biennial Workshop on Japan- Kamchatka-Alaska Subduction Processes (JKASP-2009). Fairbanks. June 22-26. 2009. P. 54
KVERT предупреждает Или о том, для чего на Камчатке создана группа реагирования на вулканические извержения (2012)
Гирина О.А. KVERT предупреждает Или о том, для чего на Камчатке создана группа реагирования на вулканические извержения // Дальневосточный ученый. Владивосток: ДВО РАН. 2012. Вып. 1444. № 2. С. 4 doi: ПИ № ФС77-50070.
Kamchatka Valley of Ten Thousand Smokes (1959)
Gorshkov G.S. Kamchatka Valley of Ten Thousand Smokes // Bulletin of the Volcanological Society of Japan. 1959. Vol. 3. Vol. 2. № 2. P. 154-156.
Kamchatka Volcano Explosive Eruptions in 2017 and Danger to Aviation (2018)
Girina O.A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Demyanchuk Yu.V. Kamchatka Volcano Explosive Eruptions in 2017 and Danger to Aviation // EGU General Assembly 2018. Viena: EGU General Assembly 2018. 2018. № 3805.