Magma rates in feeding conduits of different volcanic centres (1981)
Fedotov S.A. Magma rates in feeding conduits of different volcanic centres // Journal of Volcanology and Geothermal Research. 1981. Vol. 9. № 4. P. 379-394. doi:10.1016/0377-0273(81)90045-7.
Annotation
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.
Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the plumbing system geometry (2012)
Viccaro Marco, Giuffrida Marisa, Nicotra Eugenio, Ozerov Alexey Yu. Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the plumbing system geometry // Lithos. 2012. Vol. 140–14. P. 11 - 24. doi: 10.1016/j.lithos.2012.01.019.
Annotation
Textural and compositional features of plagioclase phenocrysts of the 1991 eruption lavas at Avachinsky Volcano (Kamchatka, Russia) were used to investigate the feeding system processes. Volcanics are porphyritic basaltic andesites and andesites with low-K affinity. A fractionation modeling for both major and trace elements was performed to justify the development of these evolved compositions. The occurrence of other magma chamber processes was verified through high-contrast BSE images and core-to-rim compositional profiles (An and FeO wt.) on plagioclase crystals. Textural types include small and large-scale oscillation patterns, disequilibrium textures at the crystal core (patchy zoning, coarse sieve-textures, dissolved cores), disequilibrium textures at the crystal rim (sieve-textures), melt inclusion alignments at the rim. Disequilibrium textures at the cores may testify episodes of destabilization at various decompression rates under water-undersaturated conditions, which suggests different pathways of magma ascent at depth. At shallower, water-saturated conditions, plagioclase crystallization continues in a system not affected by important chemical-physical perturbations (oscillatory zoning develops). Strongly sieve-textured rims, along with An increase at rather constant FeO, are evidence of mixing before the 1991 eruption between a residing magma and a hotter and volatile-richer one. The textural evidence implies that crystals underwent common histories at shallow levels, supporting the existence of a large magma reservoir whose top is at ~ 5.5 km of depth. Distinct textures at the outer rims in a hand-size sample are evidence that crystals mix mechanically at very shallow levels, probably in a small reservoir at ~ 1.8 km of depth.
Magmatic Systems and the Conditions for Hydrothermal Circulation at Depth in the Klyuchevskoi Volcanic Cluster as Inferred from Observations of Local Seismicity and Thermo-Hydrodynamic Simulation (2018)
Kiryukhin A.V., Fedotov S.A., Kiryukhin P.A. Magmatic Systems and the Conditions for Hydrothermal Circulation at Depth in the Klyuchevskoi Volcanic Cluster as Inferred from Observations of Local Seismicity and Thermo-Hydrodynamic Simulation // Journal of Volcanology and Seismology. 2018. Vol. 12. № 4. P. 231-241. doi:10.1134/S0742046318040036.
Annotation
An analysis of local seismicity within the Klyuchevskoi Volcanic Cluster and Shiveluch Volcano for the period 2000–2017 revealed a sequence of plane-oriented earthquake clusters that are interpreted here as the emplacement of dikes and sills (magmatic fracking). The geometry of magma bodies reflects the geomechanical conditions in volcanic plumbing systems and at the bases of the volcanoes. Magmatic fracking within active magmatic plumbing systems results in the formation of permeable reservoirs whose vertical extent can reach 35 km (Klyuchevskoi) and can be as wide as 15 km across (Shiveluch), depending on the geomechanical condition of the host rocks. These reservoirs will be the arena of subsequent hydrothermal circulation, producing geothermal and ore fields, as well as hydrocarbon fields. TOUGH2-EOS1sc simulation tools were used to estimate the conditions for the formation of hydrothermal reservoirs at temperatures below 1200°С and pressures below 1000 bars.
Magmatic activity of Klyuchevskoy volcano triggering eruptions of Bezymianny volcano based on seismological and petrological data (2023)
Kiryukhin A.V., Bergal-Kuvikas Olga, Lemzikov M.V. Magmatic activity of Klyuchevskoy volcano triggering eruptions of Bezymianny volcano based on seismological and petrological data // Journal of Volcanology and Geothermal Research. 2023. doi: 10.1016/j.jvolgeores.2023.107892.
Magmatic melts evolution at Gorely volcano (Southern Kamchatka) (2008)
Gavrilenko M., Ozerov A., Kyle P., Eichelberger J. Magmatic melts evolution at Gorely volcano (Southern Kamchatka) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Magmatic plumbing systems of the Koryakskii–Avacha Volcanic Cluster as inferred from observations of local seismicity and from the regime of adjacent thermal springs (2017)
Kiryukhin A.V., Fedotov S.A., Kiryukhin P.A., Chernykh E.V. Magmatic plumbing systems of the Koryakskii–Avacha Volcanic Cluster as inferred from observations of local seismicity and from the regime of adjacent thermal springs // Journal of Volcanology and Seismology. 2017. Vol. 11. № 5. P. 321-334. doi:10.1134/S0742046317050049.
Annotation
An analysis of local seismicity within the Avacha–Koryakskii Volcanic Cluster during the 2000–2016 period revealed a sequence of plane-oriented earthquake clusters that we interpret as a process of dike and sill emplacement. The highest magmatic activity occurred in timing with the 2008–2009 steam–gas eruption of Koryakskii Volcano, with magma injection moving afterwards into the cone of Avacha Volcano (2010–2016). The geometry of the magma bodies reflects the NF geomechanical conditions (tension and normal faults, Sv >SHmax >Shmin ) at the basement of Koryakskii Volcano dominated by vertical stresses Sv, with the maximum horizontal stress SHmax pointing north. A CFRAC simulation of magma injection into a fissure under conditions that are typical of those in the basement of Koryakskii Volcano (the angle of dip is 60о, the size is 2 × 2 km2, and the depth is –4 km abs.) showed that when the magma discharge is maintained at the level of 20000 kg/s during 24 hours the fissure separation increases to reach 0.3 m and the magma injection is accompanied by shear movements that occur at a rate as high as 2 × 10–3 m/s, thus corresponding to the conditions of local seismic events with Mw below 4.5. We are thus able to conclude that the use of planeoriented clusters of earthquakes for identification of magma emplacement events is a physically sound procedure. The August 2, 2011 seismicity increase in the area of the Izotovskii hot spring (7 km from the summit of Koryakskii Volcano), which is interpreted as the emplacement of a dike, has been confirmed by an increase in the spring temperature by 10–12°С during the period from October 2011 to July 2012.
Magmatic plumbing systems of the monogenetic volcanic fields: A case study of Tolbachinsky Dol, Kamchatka (2018)
Kugaenko Yulia, Volynets Anna O. Magmatic plumbing systems of the monogenetic volcanic fields: A case study of Tolbachinsky Dol, Kamchatka // Journal of Volcanology and Geothermal Research. 2018. doi:10.1016/j.jvolgeores.2018.03.015.
Annotation
Clusters of small-volume volcanoes that individually may be defined as monogenetic, but have interlinked and
interconnected plumbing systems, are used to be categorized as monogenetic volcanic fields (MVF).We argue
that such volcanic clusters should be distinguished as separate type of volcanism, intermediate between monogenetic and polygenetic. The magma plumbing system structure of the MVF (its complexity and polymagmatic
character) is the key argument for the potential separation of themin a classification. To avoid confusion caused by geneticmeaning of the used words we suggest using a term “areal volcanism” or “areal volcanic fields” (AVF instead of MVF) as defining this special type of volcanic activity. Herewe provide a reviewof themain characteristic features of one of the largest Holocene AVF, which is active now – the Tolbachik field of cinder cones in the southern part of Klyuchevskaya volcano group (Kamchatka), known in the literature as Tolbachinsky Dol. This paper is focused on the research of magma plumbing system. We consider structural,morphological, geological, geochemical and petrological data on the erupted basalts and their genesis. Specially planned seismic experiments made in 2010–2015 (seismic tomography and microseismic sounding) allowedmodeling of the principal elements of the magma plumbing system of Tolbachik AVF. Analysis of the investigations made in this area shows that Tolbachik AVF has a complex, dynamic, variable magmatic feeding system, which can be visualized as a superposition of subvertical and sublateral magma conduits. The contrast composition of the erupted rocks is caused by their different, although genetically connected, magma sources and mixing processes. One of the long-lived eruptive centers of Tolbachik AVF is Plosky Tolbachik stratovolcano, which lost its independent activity and was captured by Tolbachik AVF in Holocene. The AVF formed rejuvenated volcanism using the feeding system of the stratovolcano like an “old anthill”. The magma plumbing system characteristics of Tolbachinsky Dol strongly support the idea of separation of AVF from monogenetic volcanism type in the classification.
Magnesian Basalts of Shiveluch Andesite Volcano, Kamchatka (1997)
Volynets O.N., Ponomareva V.V., Babansky A.D. Magnesian Basalts of Shiveluch Andesite Volcano, Kamchatka // Petrology. 1997. Vol. 5. № 2. P. 206-221.
Annotation
Андезитовый вулкан Шивелуч в голоценовое время дважды извергал необычные для него породы:
амфиболсодержащие магнезиальные умереннокалиевые базальты (7600 лет назад) и магнезиаль-
ные высококалиевые базальты с флогопитом и амфиболом (3600 лет назад). Объем тефры соста-
вил примерно 0.1 и 0.3 км3 соответственно. Некоторые минералогические и геохимические особен-
ности голоценовых базальтов, например близкий диапазон вариаций магнезиальное™ вкрапленни-
ков оливина, моноклинного пироксена и амфибола, повышенная магнезиальность пород и
повышенные содержания в них Сг и Ni, наследуются андезитобазальтами и андезитами вулкана Ши-
велуч. Эти обстоятельства, а также результаты масс-балансовых расчетов не противоречат гипоте-
зе о происхождении эффузивов вулкана Шивелуч в процессе кристаллизационной дифференциации
расплавов голоценовых базальтов. Однако другие геохимические особенности рассматриваемых
пород, например близкие содержания редкоземельных элементов в них, делают маловероятной воз-
можность образования магнезиальных андезитобазальтов путем фракционной кристаллизации рас-
плава магнезиального базальта, но позволяют предполагать их формирование в процессах взаимо-
действия таких расплавов с веществом деплетированной мантии на малых глубинах. В то же время
различие в минералогическом составе голоценовых умеренно- и высококалиевых базальтов и ре-
зультаты балансовых расчетов могут служить доказательством различных источников выплавле-
ния исходных расплавов для этих пород.
Magnetostratigraphy of Kamchatkan Holocene formations of soil and pyroclastics (1990)
Kochegura V.V., Zubov A.G., Braytseva O.A. Magnetostratigraphy of Kamchatkan Holocene formations of soil and pyroclastics // Volcanology and Seismology. 1990. Vol. 8. № 6. P. 825-849.
Annotation
An account is given of magnetostratigraphic studies of Kamchatkan Holocene formations: the cover of soil and pyroclastics and the rocks of the cinder cones from the flank eruptions of Klyuchevskoi Volcano. А study was made of seven sections of the soil and pyroclastics and of samples from 17 cinder cones. А detailed account is given of the data processing procedure. Consideration is given to the reasons for the established incompleteness of the paleomagnetic record in the sections and it is demonstrated that adequately detailed reconstruction of the history of the geomagnetic 1ield is possible only provided that а study is made of а series of рагаllеl sections. The trajесtory of the geomagnetic field vector over the last 4000 years is determined on the basis of the material on radiocarbon datings. Seven cycles of paleosecular variations are distinguished in the age range investigated; each of these cycles has individual features by which they can be recognised and used for stratigraphic correlation. The, features taken were the direction of rotation of the vector, the shape and size of its loops, and the length of the cycles. Correlation of the sections based on paleomagnetic data was found to be in good agreement with the tephrostratigraphic correlation and enabled corrections to be made to the age of some horizons, including the archeological layers of the primitive settlement at Zhupanovo and the cinder cones. The metachronous magnetization present in some tephra layers was found to be an obstacle to any improvement in the accuracy and detail of magnetochronological reconstructions.
Major and trace element zoning in plagioclase from Kizimen Volcano (Kamchatka): Insights into magma-chamber processes (2013)
Churikova T.G., Ivanov B.V., Eichelberger J., Wörner G., Browne B., Izbekov P. Major and trace element zoning in plagioclase from Kizimen Volcano (Kamchatka): Insights into magma-chamber processes // Journal of Volcanology and Seismology. 2013. Vol. 7. № 2. P. 112-130. doi:10.1134/S0742046313020024.
Annotation
The data on the geochemistry of the rocks of Kizimen Volcano and results of microprobe studies of major and trace elements in plagioclase grains from acid lavas and basalt inclusions are presented. The characteristics of the Kizimen Volcano are the following: (1) basalt inclusions are abundant in acid lavas; (2) banded, mixed lavas occur; (3) the distribution curves of rare earth elements of acidic lavas and basalt inclusions intersect; (4) Sr–Nd isotope systematics of the rocks and inclusions do not indicate mixture with crustal material; (5) plagioclase phenocrysts are of direct and reverse zonation; (6) olivine and hornblende, as well as acid and mafic plagioclases, coexist in the rocks. The studies revealed that the rocks are of a hybrid nature and originated in the course of repeated mixture of acid and mafic melts either with chemical and ther mal interaction of melts or exclusively thermal ones. Study of the major and trace element distribution in zonal minerals provides an informative tool for understanding the history of the generation and evolution of melts in a magma chamber